Graph neural networks for modeling ecological networks and food webs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.15Keywords:
Ecological networks, Graph Neural Networks (GNNs), Population dynamics, Trophic interactions, Spatial patterns, Biodiversity conservationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper investigates the application of Graph Neural Networks (GNNs) for modeling ecological networks and food webs. Using Python programming with libraries such as NumPy, Matplotlib, and NetworkX, random data generation is performed to simulate population sizes of different species within ecological networks. Various types of visualizations, including bar charts, line charts, and pie charts, are created to analyze population sizes, trends, and distribution of species. Additionally, NetworkX is employed to create graphical representations of ecological networks, including directed, spring layout, and circular layout graphs. These graphs illustrate trophic interactions, energy flow dynamics, and spatial organization of species categories within ecological networks. The study's methodology integrates data generation techniques with visualization tools to analyze and interpret ecological networks and food webs. The findings contribute to understanding ecosystem dynamics, trophic interactions, and biodiversity patterns, providing insights for ecological modeling and conservation efforts. Overall, this research explores the potential of GNNs in modeling and understanding complex ecological systems, offering valuable implications for ecosystem management and biodiversity conservation.Abstract
How to Cite
Downloads
Similar Articles
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Brij M. Sharma, Parul Singhal, Neeraj Uniyal, Ram T. Mourya, Jai Sharma, Community based seasonally water quality testing of tributaries of Dehradun , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rudrapati Bhuvaneswara Prasad, Avutala Mallikarjuna Reddy, Edge properties of lexicographic product graphs of open neighborhood graphs , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Krupali Bhatt, Tushharkumar Bhatt, Certain findings on the gamma graph of some graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shri Prakash, Sunil Kumar, Population Dynamics of Sarus Crane (Grus antigone antigone, Linn.) in and around Alwara Lake of district - Kaushambi (U.P.), India , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.