Integration of AI and agent-based modeling for simulating human-ecological systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.01Keywords:
Artificial Intelligence (AI), Agent-Based Modeling (ABM), Human-ecological systems, Simulation modeling, Data visualization, Performance metricsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study investigates the integration of Artificial Intelligence (AI) and Agent-Based Modeling (ABM) for simulating human-ecological systems, aiming to enhance our understanding of complex system dynamics and inform evidence-based decision-making in environmental management and policy development. The research methodology combines computational modeling techniques with data visualization approaches to analyze simulation results and performance metrics comprehensively. The simulation of human-ecological systems utilizes Python programming language and the NumPy library to incorporate AI-enhanced decision-making within an ABM framework. Model performance metrics such as accuracy, precision, recall, and F1 score are computed to evaluate the effectiveness of the integrated approach. Additionally, simulation results and performance metrics are visualized using the Matplotlib library to facilitate interpretation and communication of research findings. The results demonstrate the initial spatial distribution of agents within the human-ecological system, the emergence of uniform and localized clusters of agent activity over subsequent simulation steps, and the strengths and weaknesses associated with the integrated AI-ABM approach. Overall, this study contributes to advancing research in environmental science and sustainability by providing insights into the capabilities and limitations of AI-enhanced ABM models for simulating human-ecological systems.Abstract
How to Cite
Downloads
Similar Articles
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Seema Bhakuni, Application of artificial intelligence on human resource management in information technolgy industry in India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

