Integration of AI and agent-based modeling for simulating human-ecological systems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.01Keywords:
Artificial Intelligence (AI), Agent-Based Modeling (ABM), Human-ecological systems, Simulation modeling, Data visualization, Performance metricsDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study investigates the integration of Artificial Intelligence (AI) and Agent-Based Modeling (ABM) for simulating human-ecological systems, aiming to enhance our understanding of complex system dynamics and inform evidence-based decision-making in environmental management and policy development. The research methodology combines computational modeling techniques with data visualization approaches to analyze simulation results and performance metrics comprehensively. The simulation of human-ecological systems utilizes Python programming language and the NumPy library to incorporate AI-enhanced decision-making within an ABM framework. Model performance metrics such as accuracy, precision, recall, and F1 score are computed to evaluate the effectiveness of the integrated approach. Additionally, simulation results and performance metrics are visualized using the Matplotlib library to facilitate interpretation and communication of research findings. The results demonstrate the initial spatial distribution of agents within the human-ecological system, the emergence of uniform and localized clusters of agent activity over subsequent simulation steps, and the strengths and weaknesses associated with the integrated AI-ABM approach. Overall, this study contributes to advancing research in environmental science and sustainability by providing insights into the capabilities and limitations of AI-enhanced ABM models for simulating human-ecological systems.Abstract
How to Cite
Downloads
Similar Articles
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Archana Borde, Dattatraya Pandurang Rane, Pratap Vasantrao Pawar, Role of artificial intelligence in digital marketing in enhancing customer engagement , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amala Deepa V., T. Lucia Agnes Beena, Enhancing data imputation in complex datasets using Lagrange polynomial interpolation and hot-deck fusion , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

