Role of artificial intelligence in digital marketing in enhancing customer engagement
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.17Keywords:
Artificial intelligence, Digital marketing, Customer engagement, Customer interaction, Personalization, Predictive analytics, Chatbots, Recommendation systems.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Through its ability to help businesses better understand, engage, and communicate with their consumers, artificial intelligence (AI) has completely changed a number of areas of digital marketing. In order to improve customer engagement, this research examines how AI is used to digital marketing tactics. In order to generate customized advertising campaigns and improve consumer enjoy, businesses may additionally leverage AI-pushed technologies like chatbots, personalised content material, predictive analytics, and recommendation systems. Customer opinions on AI-powered marketing tools and their efficacy in boosting engagement are examined in a quantitative study that was completed by 300 respondents. As a consequence, businesses and their customers are able to build deeper connections. The findings show that AI greatly improves customization, predictive insights, and customer engagement. Insights on how digital marketers may use AI to increase engagement and improve overall marketing success are provided by this research.Abstract
How to Cite
Downloads
Similar Articles
- Sarika A. Nirmal, Nalanda D. Wani, The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Priya Sharma, Jyoti Rana, Understanding Customer Awareness and effectiveness of Social Media Marketing in Banks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Seema Bhakuni, Application of artificial intelligence on human resource management in information technolgy industry in India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Vnuchko, O. Batrymenko, О. Ткach, М. Karashchuk, M. Volkivskyi, Models of interaction between business and government in the conditions of the European integration course of Ukraine , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shriram N. Kargaonkar, Sushma Pradeep Chalke, Sunil Mahajan, Statistical Modeling of Consumer Preferences for Eco-friendly Digital Products: A Data-driven Approach Toward Sustainable Consumption in India , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

