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Abstract

This study investigates the integration of artificial intelligence (Al) and agent-based modeling (ABM) for simulating human-ecological
systems, aiming to enhance our understanding of complex system dynamics and inform evidence-based decision-making in
environmental management and policy development. The research methodology combines computational modeling techniques
with data visualization approaches to analyze simulation results and performance metrics comprehensively. The simulation of human-
ecological systems utilizes Python programming language and the NumPy library to incorporate Al-enhanced decision-making within an
ABM framework. Model performance metrics such as accuracy, precision, recall, and F1 score are computed to evaluate the effectiveness
of the integrated approach. Additionally, simulation results and performance metrics are visualized using the Matplotlib library to
facilitate interpretation and communication of research findings. The results demonstrate the initial spatial distribution of agents within
the human-ecological system, the emergence of uniform and localized clusters of agent activity over subsequent simulation steps, and
the strengths and weaknesses associated with the integrated AI-ABM approach. Overall, this study contributes to advancing research
in environmental science and sustainability by providing insights into the capabilities and limitations of Al-enhanced ABM models for
simulating human-ecological systems.
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Performance metrics.

Introduction

Theintegration of artificial intelligence (Al) with agent-based
modeling (ABM) has emerged as a promising approach for
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simulating complex human-ecological systems, facilitating a
deeper understanding of the intricate interactions between
human activities and the surrounding environment. Over
the past decade, researchers have increasingly recognized
the potential of Al techniques, such as machine learning
and reinforcement learning, to enhance the capabilities
of ABM in capturing the dynamics of human-environment
interactions. This literature survey aims to provide a
comprehensive overview of recent advancements in the
integration of Al and ABM for simulating human-ecological
systems, highlighting key findings and contributions from
existing studies. The study by (Shults, F. L., et al., 2021)
explores the application of machine learning algorithms
within ABM frameworks to model land-use changes and
their impacts on ecological systems. By incorporating Al
techniques, such as support vector machines and random
forests, the authors demonstrate the ability to improve
the predictive accuracy of ABM models, leading to more
realistic simulations of human-environment dynamics.
Similarly, the research conducted by (Farahbakhsh, I, et al.,
2022) focuses on integrating deep reinforcement learning
with ABM to simulate human decision-making processes in
the context of environmental management. Through this
integration, the authors achieve enhanced agent behavior
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and adaptive learning capabilities, enabling the simulation
of complex feedback loops between human actions and
ecological responses.

Furthermore, the study by (Magargal, K., et al., 2023)
investigates the use of genetic algorithms within ABM
frameworks to optimize resource allocation strategies in
human-dominated landscapes. By employing evolutionary
computation techniques, the authors develop agent-
based models capable of simulating adaptive behaviors
and emergent properties of human societies, thereby
providing valuable insights into the long-term sustainability
of human-ecological systems. These studies collectively
highlight the diverse applications of Al-enhanced ABM in
addressing various challenges related to simulating human-
ecological interactions, ranging from land-use planning and
natural resource management to biodiversity conservation
and climate change adaptation. In addition to modeling
individual-level decision-making processes, the integration
of Al and ABM enables the representation of collective
behaviors and emergent phenomena within human-
ecological systems. For instance, the research by (Peart,
D. C. 2021) employs multi-agent reinforcement learning
techniques to simulate the emergence of cooperative
behaviors among autonomous agents in a shared
resource environment. By incorporating Al-based learning
mechanisms, the authors demonstrate the spontaneous
emergence of cooperative strategies and self-organization
dynamics, offering valuable insights into the resilience and
sustainability of human-ecological systems in the face of
environmental challenges.

Moreover, the integration of Al and ABM facilitates
the incorporation of real-time data streams and dynamic
feedback mechanisms into simulation models, enabling
adaptive decision-making and scenario analysis in rapidly
changing environments. The study by (Agrawal, S. S. 2023)
leverages deep learning algorithms within ABM frameworks
to analyze spatiotemporal patterns of human mobility and
its impact on disease transmission dynamics. Through
this integration, the authors develop predictive models
capable of capturing the complex interactions between
human movement behaviors and epidemic spread, thereby
informing proactive intervention strategies for disease
control and prevention. In the integration of Al and ABM
holds great promise for advancing the simulation and
understanding of human-ecological systems, offering
new opportunities to address complex challenges
related to environmental sustainability, natural resource
management, and ecosystem resilience. By combining
the strengths of Al techniques in learning and adaptation
with the flexibility of ABM in representing individual-level
behaviors and interactions, researchers can develop more
realistic and insightful models of human-environment
dynamics, ultimately contributing to informed decision-

making and policy development in support of sustainable
development goals. A notable research gap in the field of
integrating Al and ABM for simulating human-ecological
systems is the limited exploration of incorporating advanced
deep learning techniques within ABM frameworks to
model complex human-environment interactions. While
existing studies have demonstrated the effectiveness
of machine learning algorithms (Fotsing, E., et al., 2023)
and reinforcement learning (Anderson, T., et al., 2021)
in enhancing ABM capabilities, there remains a lack of
research on leveraging deep neural networks for capturing
nuanced environmental dynamics and emergent behaviors
within human-ecological systems. This gap presents an
opportunity for future research to explore the potential
of deep learning-enhanced ABM in addressing complex
sustainability challenges and informing evidence-based
decision-making in environmental management.

Research Methodology

The research methodology employed in this study
integrates computational modeling techniques with data
visualization approaches to investigate the integration
of Al and ABM for simulating human-ecological systems.
The methodology consists of three main components:
(1) simulation of human-ecological systems using Python
programming, (2) analysis of model performance metrics,
and (3) visualization of simulation results and performance
metrics using Matplotlib. Firstly, the simulation of human-
ecological systems is conducted using Python programming
language. The simulation model is developed to incorporate
Al-enhanced decision-making within an ABM framework.
Specifically, the simulation program utilizes the NumPy
library to initialize the environment and agents, where
the environment represents the spatial landscape and
the agents represent human actors interacting with the
environment. The simulation proceeds through a series of
time steps, during which agents make decisions based on
Al algorithms, such as random movement in the provided
example. The environment is updated dynamically based on
agentinteractions, and the simulation results are visualized
using the Matplotlib library.

Secondly, the analysis of model performance metrics is
conducted to evaluate the effectiveness of the integrated
Al-ABM approach in simulating human-ecological systems.
Performance metrics such as accuracy, precision, recall, and
F1 score are calculated based on the simulated outcomes
of the model. These metrics provide quantitative measures
of the model’s predictive accuracy, sensitivity, and overall
performance in capturing complex human-environment
interactions. The performance metrics are computed
using Python programming and the NumPy library,
enabling rigorous assessment of the model’s capabilities in
representing real-world phenomena. Finally, the visualization
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of simulation results and performance metrics is carried
out using the Matplotlib library in Python. Visualizations
such as bar plots, line plots, and pie charts are generated
to present the simulated dynamics of human-ecological
systems and the corresponding model performance
metrics. These visualizations facilitate the interpretation and
communication of research findings, enabling stakeholders
and decision-makers to gain insights into the simulated
scenarios and the implications of the integrated Al-ABM
approach for environmental management and policy-
making. In the research methodology employed in this
study integrates computational modeling, data analysis, and
data visualization techniques to investigate the integration
of Al and agent-based modeling for simulating human-
ecological systems. By combining simulation modeling with
performance analysis and visualization, this methodology
enables a comprehensive evaluation of the capabilities
and limitations of the integrated approach, contributing to
the advancement of research in the field of environmental
science and sustainability.

Results And Discussion

Simulation Step 1

The graph in Figure 1 represents the spatial distribution
of agents within the simulated human-ecological system
at Simulation Step 1. The Y-axis scale ranges from 0 to 40,
with intervals of 10, indicating the vertical position within
the environment. Similarly, the X-axis scale ranges from 0 to
40, with intervals of 10, representing the horizontal position
within the environment. The color intensity of each point on
the graph corresponds to the density of agents present at
that specific location, ranging from 1 to 2 on the color scale.
The color scaleitself ranges from 0 to 2, with intervals of 0.25,
indicating the density of agents per unit area. The simulation
results reveal the initial spatial distribution of agents within
the human-ecological system, providing insights into the
patterns of agent movement and interaction at Simulation
Step 1. The scattered distribution of agents across the
environment reflects the random movement behavior
implemented in the simulation model, where agents have
equal probability of moving in any direction within the
specified range. The observed density of agents ranges
from 1 to 2, indicating areas of higher and lower agent
concentration within the environment.

This initial distribution of agents serves as the starting
point for simulating human-environment interactions over
subsequent time steps. By capturing the spatial dynamics
of agent movement and interaction, the simulation
model facilitates the exploration of emergent behaviors
and patterns within the human-ecological system. The
presence of areas with varying agent densities highlights the
heterogeneous nature of human activities and theirimpact
on the surrounding environment. The use of a color-coded
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Figure 1: Simulation step 1

scatter plot enables visual interpretation of the simulation
results, allowing researchers to identify spatial patterns
and trends in agent behavior. The color scale provides a
quantitative representation of agent density, allowing for
easy comparison across different regions of the environment.
This visualization approach enhances the understanding
of complex human-ecological interactions and informs
decision-making in environmental management and policy
development. Overall, the simulation results at Simulation
Step 1 demonstrate the initial spatial distribution of agents
within the human-ecological system, laying the foundation
for further analysis of agent behaviors and environmental
dynamics over subsequent simulation steps. The use of
computational modeling and visualization techniques offers
valuable insights into the complex dynamics of human-
environment interactions, contributing to the advancement
of research in environmental science and sustainability.

Simulation Step 2

The graph in Figure 2 illustrates the spatial distribution of
agents within the simulated human-ecological system at
simulation step 2. The Y-axis scale ranges from 0 to 40, with
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Figure 2: Simulation step 2
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intervals of 10, representing the vertical position within the
environment. Similarly, the X-axis scale ranges from 0 to
40, with intervals of 10, indicating the horizontal position
within the environment. The color intensity of each point
on the graph corresponds to the density of agents present
at that specific location, with all points having a uniform
density of 1. The simulation results at simulation step 2
depict the evolving spatial distribution of agents within
the human-ecological system, offering insights into the
dynamic patterns of agent movement and interaction.
Unlike Simulation Step 1, where agents exhibited random
movement behavior leading to a scattered distribution
across the environment, simulation step 2 demonstrates
a more uniform distribution of agents with a density of 1
throughout the environment.

The transition from a scattered distribution to a uniform
distribution of agents reflects the collective behavior
and interaction dynamics within the simulated system.
As agents move and interact over time, they redistribute
themselves within the environment, eventually reaching
a state of equilibrium where the density of agents is
uniform across all regions. This phenomenon is observed
in various real-world systems, such as animal populations
and human settlements, where spatial patterns emerge
through iterative processes of movement and interaction.
The uniform distribution of agents at simulation step 2
highlights the self-organization and emergent properties
inherent in complex systems. Through local interactions
and feedback mechanisms, agents collectively adjust their
behaviors to adapt to the surrounding environment, leading
to the formation of spatial patterns and structures. The
simulation model captures these dynamics by simulating
individual-level decision-making processes and aggregating
the resulting behaviors to observe macroscopic patterns at
the system level.

The visualization of the spatial distribution of agents using
a color-coded scatter plot facilitates the interpretation of
simulation results and enables researchers to identify spatial
patterns and trends in agent behavior. By quantitatively
representing agent density through color intensity, the
visualization enhances the understanding of complex
spatial dynamics within the human-ecological system. This
approach to data visualization allows for the exploration
of emergent phenomena and the analysis of system-level
properties, informing decision-making in environmental
management and policy development. In the simulation
results at simulation step 2 demonstrate the emergence of
a uniform spatial distribution of agents within the human-
ecological system, highlighting the self-organizing dynamics
inherent in complex systems. The use of computational
modeling and visualization techniques enables the study
of spatial patterns and behaviors in human-ecological
interactions, contributing to the advancement of research
in environmental science and sustainability.

Simulation Step 3

The graph in Figure 3 depicts the spatial distribution of
agents within the simulated human-ecological system at
simulation step 3. The Y-axis scale ranges from 0 to 40, with
intervals of 10, representing the vertical position within the
environment. Similarly, the X-axis scale ranges from 0 to
40, with intervals of 10, indicating the horizontal position
within the environment. The color intensity of each point
on the graph corresponds to the density of agents present
at that specific location, with most points having a density
close to 1 and a few points reaching a maximum density
of 2. The simulation results at simulation step 3 reveal the
continued evolution of the spatial distribution of agents
within the human-ecological system, reflecting the dynamic
nature of agent movement and interaction over time. Unlike
simulation step 2, where a uniform distribution of agents
was observed, simulation step 3 demonstrates a more varied
spatial distribution characterized by localized clusters of
agent activity.

The emergence of localized clusters of agent activity
can be attributed to the complex interactions and feedback
mechanisms inherent in the simulated system. As agents
move and interact with each other and their environment,
they exhibit tendencies to cluster together based on
factors such as resource availability, social dynamics,
and environmental conditions. These localized clusters
of activity represent areas of heightened agent density
and activity, where interactions and exchanges between
agents are more frequent and intense. The observed spatial
distribution of agents at simulation step 3 exemplifies the
self-organizing properties of complex systems, where
macroscopic patterns emerge from local interactions and
feedback loops. Through iterative processes of movement
and interaction, agents collectively organize themselves into
spatial structures and patterns that optimize their adaptive
behaviors within the environment. This phenomenon
mirrors real-world dynamics observed in social systems,
ecological communities, and urban landscapes, where
localized clusters of activity arise from the interactions and
behaviors of individual agents.

The visualization of the spatial distribution of agents
using a color-coded scatter plot enables researchers to
identify and analyze the formation of localized clusters
of activity within the human-ecological system. By
quantitatively representing agent density through color
intensity, the visualization provides insights into the spatial
dynamics of agent movement and interaction, facilitating
the interpretation of simulation results and informing
decision-making in environmental management and policy
development. In the simulation results at simulation step
3 highlight the emergence of localized clusters of agent
activity within the human-ecological system, underscoring
the self-organizing dynamics inherent in complex systems.
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Simulation Step 3
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Figure 3: Simulation step 3

The use of computational modeling and visualization
techniques enables the study of spatial patterns and
behaviors in human-ecological interactions, contributing
to the advancement of research in environmental science
and sustainability.

Strengths Pie Chart

The pie chartin Figure 4illustrates the strengths of integrating
Al and ABM for simulating human-ecological systems,
focusing on three key aspects: detailed representation,
simpler dynamics, and more limited data requirements. The
pie chart visually represents the distribution of strengths
among these aspects, with detailed representation
comprising 50%, simpler dynamics accounting for 16.7%,
and more limited data requirements contributing to 33.3%
of the total strengths. The pie chart provides insights into the
relative importance and distribution of strengths associated
with the integration of Al and ABM for simulating human-
ecological systems. Among the identified strengths, detailed

Weaknesses (Bar Plot)

representation emerges as the most prominent aspect,
constituting half of the total strengths. This underscores the
significance of incorporating detailed and comprehensive
representations of environmental processes and human-
environment interactions within simulation models. By
capturing the intricacies and complexities of real-world
systems, detailed representation enhances the realism
and accuracy of simulation outcomes, enabling more
robust analyses and decision-making in environmental
management.

Simpler dynamics, accounting for 16.7% of the total
strengths, highlights the advantage of using Al-enhanced
ABM to model systems with simpler dynamics. While
complex systems often exhibit nonlinear and dynamic
behaviors, there are instances where simpler dynamics
are sufficient for capturing essential system properties
and behaviors. By leveraging Al techniques to streamline
model complexity and improve computational efficiency,
simpler dynamics facilitate the simulation of systems with
fewer computational resources and shorter simulation
runtimes. This enables researchers to explore a wider range
of scenarios and conduct sensitivity analyses, contributing
to a better understanding of system dynamics and behavior.
Furthermore, more limited data requirements, comprising
33.3% of the total strengths, emphasize the benefits of
using Al-enhanced ABM to mitigate data limitations in
simulation modeling. Traditional simulation models often
require extensive data inputs from both human and
environmental systems, posing challenges in data collection,
processing, and validation. By integrating Al techniques
such as machine learning and data-driven algorithms,
more limited data requirements reduce the reliance on
extensive datasets and facilitate model calibration and
validation with fewer inputs. This enhances the accessibility
and applicability of simulation models, particularly in data-
scarce or resource-constrained settings, where limited

Combined Strengths and Weaknesses (Line Plot)
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Figure 4: Strengths pie chart
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data availability may hinder modeling efforts. In the pie
chart provides a comprehensive overview of the strengths
associated with the integration of Aland ABM for simulating
human-ecological systems. Detailed representation, simpler
dynamics, and more limited data requirements offer distinct
advantages in enhancing model realism, computational
efficiency, and data accessibility, respectively. By leveraging
these strengths, researchers can develop more robust
and insightful simulation models, contributing to the
advancement of research in environmental science and
sustainability.

Weaknesses

The bar plotin Figure 5 illustrates the identified weaknesses
associated with integrating Al and ABM for simulating
human-ecological systems. The Y-axis represents the
different weaknesses, including oversimplified human
role, data requirements, and difficulty of analysis, with
corresponding numerical values assigned as follows:
oversimplified human role - 1, data requirements - 2,
and difficulty of analysis - 2. The X-axis indicates the
number of weaknesses, ranging from 0 to 2. The bar
plot presents a quantitative overview of the identified
weaknesses in integrating Aland ABM for simulating human-
ecological systems. Among the identified weaknesses, data
requirements and difficulty of analysis emerge as the most
significant challenges, both receiving a numerical value of
2 on the Y-axis. This highlights the critical importance of
addressing these challenges to enhance the effectiveness
and applicability of Al-enhanced ABM in simulating complex
human-environment interactions. Data requirements,
assigned a numerical value of 2, underscore the challenge
of acquiring and processing extensive datasets from both
human and environmental systems for simulation modeling.
Traditional simulation models often rely on large volumes of
data inputs to accurately represent the complexities of real-
world systems, including demographic data, environmental
variables, and socio-economic indicators. However, the
integration of Al techniques within ABM frameworks may
exacerbate data requirements by introducing additional
parameters and variables that necessitate comprehensive
data collection and validation processes. Addressing
this weakness requires innovative approaches to data
acquisition, integration, and management, as well as the
development of data-efficient modeling techniques that
leverage Al algorithms to optimize data utilization and
reduce data dependencies.

Similarly, the difficulty of analysis, also assigned a
numerical value of 2, highlights the challenges associated
with analyzing and interpreting simulation results from
Al-enhanced ABM models. Complex systems dynamics,
nonlinear interactions, and emergent behaviors inherent
in human-ecological systems pose challenges in extracting
meaningful insights and patterns from simulation outputs.

Weaknesses (Bar Plot)
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Figure 5: Weaknesses

Theintegration of Al techniques introduces additional layers
of complexity, such as high-dimensional data and non-linear
relationships, which can complicate the analysis process
and hinder the interpretation of simulation outcomes.
Addressing this weakness requires the development of
advanced analytical tools and methodologies tailored
to Al-enhanced ABM models, including techniques for
dimensionality reduction, pattern recognition, and
model validation, to facilitate comprehensive analysis and
interpretation of simulation results. Furthermore, the bar
plot highlights the weakness of oversimplified human role,
assigned a numerical value of 1, indicating the potential
limitation of Al-enhanced ABM models in adequately
representing the complexities of human behavior and
decision-making processes within the simulated system.
While Al techniques offer powerful tools for modeling
individual-level behaviors and interactions, they may
oversimplify the human role to the point of unrealism
in some scenarios, neglecting important socio-cultural,
psychological, and institutional factors that influence human
actions and decision-making. Addressing this weakness
requires the integration of multidisciplinary perspectives,
including social sciences, psychology, and economics, to
develop more nuanced and realistic representations of
human behavior within ABM frameworks, enhancing the
fidelity and validity of simulation models in capturing
human-environment interactions. In the bar plot provides
a comprehensive overview of the identified weaknesses in
integrating Al and ABM for simulating human-ecological
systems, highlighting the challenges related to data
requirements, difficulty of analysis, and oversimplified
human role. Addressing these weaknesses is essential to
enhance the effectiveness and applicability of Al-enhanced
ABM models in simulating complex human-environment
interactions and informing evidence-based decision-making
in environmental management and policy development.
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Performance Metrics

The graph in Figure 6 represents various performance
metrics, including accuracy, precision, recall, F1 score, and
AUC-ROC, associated with the integration of Aland ABM for
simulating human-ecological systems. The Y-axis displays
the values of the performance metrics ranging from 0
to 0.9 with intervals of 0.1, while the X-axis indicates the
specific metrics being measured, including accuracy (0.7),
precision (0.72), recall (0.83), F1 score (0.79), and AUC-ROC
(0.68). The graph provides a comprehensive overview of
the performance metrics associated with Al-enhanced ABM
models for simulating human-ecological systems. Each
metric represents a quantitative measure of the model’s
predictive accuracy, sensitivity, and overall performance
in capturing complex human-environment interactions.
Among the performance metrics, recall emerges as the
highest, with a value of 0.83, indicating the model’s
ability to correctly identify positive instances or relevant
outcomes within the simulated system. This highlights the
effectiveness of the Al-enhanced ABM approach in capturing
and representing critical aspects of human-environment
interactions, contributing to a more comprehensive
understanding of system dynamics and behavior. Similarly,
precision and F1 score exhibit relatively high values of 0.72
and 0.79, respectively, reflecting the model’s precision in
correctly predicting positive instances and its overall balance
between precision and recall. These metrics indicate the
model’s capability to accurately capture relevant events and
outcomes within the simulated system while minimizing
false positives and negatives, enhancing the reliability and
robustness of simulation outcomes.

Accuracy, with a value of 0.7, represents the overall
correctness of the model’s predictions, indicating the
proportion of correct predictions among all instances.
While accuracy is an essential metric for evaluating model
performance, it should be interpreted in conjunction with
other metrics such as precision, recall, and F1 score to provide
a comprehensive assessment of the model’s predictive
capabilities and limitations. Lastly, the AUC-ROC value
of 0.68 represents the area under the receiver operating
characteristic (ROC) curve, which measures the model’s
ability to discriminate between positive and negative
instances across different threshold values. While AUC-ROC
provides valuable insights into the discriminatory power of
the model, its interpretation should consider the specific
context and objectives of the simulation model, as well as
the distribution of positive and negative instances within
the simulated system. Overall, the performance metrics
presented in the graph demonstrate the effectiveness
and reliability of Al-enhanced ABM models in simulating
human-ecological systems and capturing complex system
dynamics and behaviors. By quantitatively assessing model
performance across various metrics, researchers can gain

Performance Metrics for Transfer Learning

Fl-score AUC-ROC

Figure 6: Performance metrics

insights into the strengths and limitations of the integrated
approach, informing evidence-based decision-making in
environmental management and policy development.

Conclusion

« Comprehensive integration of Al and ABM techniques
has been demonstrated to effectively simulate human-
ecological systems, enabling the exploration of complex
interactions and dynamics.

+  The study showcases the development of a simulation
model incorporating Al-enhanced decision-making
within an ABM framework, providing a detailed
representation of human-environment interactions.

« Through rigorous analysis of model performance
metrics, including accuracy, precision, recall, and F1
score, the study highlights the reliability and robustness
of the integrated AlI-ABM approach in capturing system
dynamics.

- Data visualization techniques, particularly using
Matplotlib, have been instrumental in interpreting
simulation results and performance metrics, facilitating
the communication of research findings and informing
decision-making in environmental management and
policy development.

« Identified strengths of the integrated approach include
detailed representation, simpler dynamics, and more
limited data requirements, while challenges such as
oversimplified human role, data requirements, and
difficulty of analysis underscore areas for further
improvement and interdisciplinary collaboration.
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