
Abstract
This study investigates the integration of artificial intelligence (AI) and agent-based modeling (ABM) for simulating human-ecological 
systems, aiming to enhance our understanding of complex system dynamics and inform evidence-based decision-making in 
environmental management and policy development. The research methodology combines computational modeling techniques 
with data visualization approaches to analyze simulation results and performance metrics comprehensively. The simulation of human-
ecological systems utilizes Python programming language and the NumPy library to incorporate AI-enhanced decision-making within an 
ABM framework. Model performance metrics such as accuracy, precision, recall, and F1 score are computed to evaluate the effectiveness 
of the integrated approach. Additionally, simulation results and performance metrics are visualized using the Matplotlib library to 
facilitate interpretation and communication of research findings. The results demonstrate the initial spatial distribution of agents within 
the human-ecological system, the emergence of uniform and localized clusters of agent activity over subsequent simulation steps, and 
the strengths and weaknesses associated with the integrated AI-ABM approach. Overall, this study contributes to advancing research 
in environmental science and sustainability by providing insights into the capabilities and limitations of AI-enhanced ABM models for 
simulating human-ecological systems.
Keywords: Artificial intelligence, Agent-based modeling, Human-ecological systems, Simulation modeling, Data visualization, 
Performance metrics.
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Introduction
The integration of artificial intelligence (AI) with agent-based 
modeling (ABM) has emerged as a promising approach for 
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simulating complex human-ecological systems, facilitating a 
deeper understanding of the intricate interactions between 
human activities and the surrounding environment. Over 
the past decade, researchers have increasingly recognized 
the potential of AI techniques, such as machine learning 
and reinforcement learning, to enhance the capabilities 
of ABM in capturing the dynamics of human-environment 
interactions. This literature survey aims to provide a 
comprehensive overview of recent advancements in the 
integration of AI and ABM for simulating human-ecological 
systems, highlighting key findings and contributions from 
existing studies. The study by (Shults, F. L., et al., 2021) 
explores the application of machine learning algorithms 
within ABM frameworks to model land-use changes and 
their impacts on ecological systems. By incorporating AI 
techniques, such as support vector machines and random 
forests, the authors demonstrate the ability to improve 
the predictive accuracy of ABM models, leading to more 
realistic simulations of human-environment dynamics. 
Similarly, the research conducted by (Farahbakhsh, I., et al., 
2022) focuses on integrating deep reinforcement learning 
with ABM to simulate human decision-making processes in 
the context of environmental management. Through this 
integration, the authors achieve enhanced agent behavior 
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and adaptive learning capabilities, enabling the simulation 
of complex feedback loops between human actions and 
ecological responses.

Furthermore, the study by (Magargal, K., et al., 2023) 
investigates the use of genetic algorithms within ABM 
frameworks to optimize resource allocation strategies in 
human-dominated landscapes. By employing evolutionary 
computation techniques, the authors develop agent-
based models capable of simulating adaptive behaviors 
and emergent properties of human societies, thereby 
providing valuable insights into the long-term sustainability 
of human-ecological systems. These studies collectively 
highlight the diverse applications of AI-enhanced ABM in 
addressing various challenges related to simulating human-
ecological interactions, ranging from land-use planning and 
natural resource management to biodiversity conservation 
and climate change adaptation. In addition to modeling 
individual-level decision-making processes, the integration 
of AI and ABM enables the representation of collective 
behaviors and emergent phenomena within human-
ecological systems. For instance, the research by (Peart, 
D. C. 2021) employs multi-agent reinforcement learning 
techniques to simulate the emergence of cooperative 
behaviors among autonomous agents in a shared 
resource environment. By incorporating AI-based learning 
mechanisms, the authors demonstrate the spontaneous 
emergence of cooperative strategies and self-organization 
dynamics, offering valuable insights into the resilience and 
sustainability of human-ecological systems in the face of 
environmental challenges.

Moreover, the integration of AI and ABM facilitates 
the incorporation of real-time data streams and dynamic 
feedback mechanisms into simulation models, enabling 
adaptive decision-making and scenario analysis in rapidly 
changing environments. The study by (Agrawal, S. S. 2023) 
leverages deep learning algorithms within ABM frameworks 
to analyze spatiotemporal patterns of human mobility and 
its impact on disease transmission dynamics. Through 
this integration, the authors develop predictive models 
capable of capturing the complex interactions between 
human movement behaviors and epidemic spread, thereby 
informing proactive intervention strategies for disease 
control and prevention. In the integration of AI and ABM 
holds great promise for advancing the simulation and 
understanding of human-ecological systems, offering 
new opportunities to address complex challenges 
related to environmental sustainability, natural resource 
management, and ecosystem resilience. By combining 
the strengths of AI techniques in learning and adaptation 
with the flexibility of ABM in representing individual-level 
behaviors and interactions, researchers can develop more 
realistic and insightful models of human-environment 
dynamics, ultimately contributing to informed decision-

making and policy development in support of sustainable 
development goals. A notable research gap in the field of 
integrating AI and ABM for simulating human-ecological 
systems is the limited exploration of incorporating advanced 
deep learning techniques within ABM frameworks to 
model complex human-environment interactions. While 
existing studies have demonstrated the effectiveness 
of machine learning algorithms (Fotsing, E., et al., 2023) 
and reinforcement learning (Anderson, T., et al., 2021) 
in enhancing ABM capabilities, there remains a lack of 
research on leveraging deep neural networks for capturing 
nuanced environmental dynamics and emergent behaviors 
within human-ecological systems. This gap presents an 
opportunity for future research to explore the potential 
of deep learning-enhanced ABM in addressing complex 
sustainability challenges and informing evidence-based 
decision-making in environmental management.

Research Methodology 
The research methodology employed in this study 
integrates computational modeling techniques with data 
visualization approaches to investigate the integration 
of AI and ABM for simulating human-ecological systems. 
The methodology consists of three main components: 
(1) simulation of human-ecological systems using Python 
programming, (2) analysis of model performance metrics, 
and (3) visualization of simulation results and performance 
metrics using Matplotlib. Firstly, the simulation of human-
ecological systems is conducted using Python programming 
language. The simulation model is developed to incorporate 
AI-enhanced decision-making within an ABM framework. 
Specifically, the simulation program utilizes the NumPy 
library to initialize the environment and agents, where 
the environment represents the spatial landscape and 
the agents represent human actors interacting with the 
environment. The simulation proceeds through a series of 
time steps, during which agents make decisions based on 
AI algorithms, such as random movement in the provided 
example. The environment is updated dynamically based on 
agent interactions, and the simulation results are visualized 
using the Matplotlib library.

Secondly, the analysis of model performance metrics is 
conducted to evaluate the effectiveness of the integrated 
AI-ABM approach in simulating human-ecological systems. 
Performance metrics such as accuracy, precision, recall, and 
F1 score are calculated based on the simulated outcomes 
of the model. These metrics provide quantitative measures 
of the model’s predictive accuracy, sensitivity, and overall 
performance in capturing complex human-environment 
interactions. The performance metrics are computed 
using Python programming and the NumPy library, 
enabling rigorous assessment of the model’s capabilities in 
representing real-world phenomena. Finally, the visualization 
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of simulation results and performance metrics is carried 
out using the Matplotlib library in Python. Visualizations 
such as bar plots, line plots, and pie charts are generated 
to present the simulated dynamics of human-ecological 
systems and the corresponding model performance 
metrics. These visualizations facilitate the interpretation and 
communication of research findings, enabling stakeholders 
and decision-makers to gain insights into the simulated 
scenarios and the implications of the integrated AI-ABM 
approach for environmental management and policy-
making. In the research methodology employed in this 
study integrates computational modeling, data analysis, and 
data visualization techniques to investigate the integration 
of AI and agent-based modeling for simulating human-
ecological systems. By combining simulation modeling with 
performance analysis and visualization, this methodology 
enables a comprehensive evaluation of the capabilities 
and limitations of the integrated approach, contributing to 
the advancement of research in the field of environmental 
science and sustainability.

Results And Discussion

Simulation Step 1
The graph in Figure 1 represents the spatial distribution 
of agents within the simulated human-ecological system 
at Simulation Step 1. The Y-axis scale ranges from 0 to 40, 
with intervals of 10, indicating the vertical position within 
the environment. Similarly, the X-axis scale ranges from 0 to 
40, with intervals of 10, representing the horizontal position 
within the environment. The color intensity of each point on 
the graph corresponds to the density of agents present at 
that specific location, ranging from 1 to 2 on the color scale. 
The color scale itself ranges from 0 to 2, with intervals of 0.25, 
indicating the density of agents per unit area. The simulation 
results reveal the initial spatial distribution of agents within 
the human-ecological system, providing insights into the 
patterns of agent movement and interaction at Simulation 
Step 1. The scattered distribution of agents across the 
environment reflects the random movement behavior 
implemented in the simulation model, where agents have 
equal probability of moving in any direction within the 
specified range. The observed density of agents ranges 
from 1 to 2, indicating areas of higher and lower agent 
concentration within the environment.

This initial distribution of agents serves as the starting 
point for simulating human-environment interactions over 
subsequent time steps. By capturing the spatial dynamics 
of agent movement and interaction, the simulation 
model facilitates the exploration of emergent behaviors 
and patterns within the human-ecological system. The 
presence of areas with varying agent densities highlights the 
heterogeneous nature of human activities and their impact 
on the surrounding environment. The use of a color-coded 

scatter plot enables visual interpretation of the simulation 
results, allowing researchers to identify spatial patterns 
and trends in agent behavior. The color scale provides a 
quantitative representation of agent density, allowing for 
easy comparison across different regions of the environment. 
This visualization approach enhances the understanding 
of complex human-ecological interactions and informs 
decision-making in environmental management and policy 
development. Overall, the simulation results at Simulation 
Step 1 demonstrate the initial spatial distribution of agents 
within the human-ecological system, laying the foundation 
for further analysis of agent behaviors and environmental 
dynamics over subsequent simulation steps. The use of 
computational modeling and visualization techniques offers 
valuable insights into the complex dynamics of human-
environment interactions, contributing to the advancement 
of research in environmental science and sustainability.

Simulation Step 2
The graph in Figure 2 illustrates the spatial distribution of 
agents within the simulated human-ecological system at 
simulation step 2. The Y-axis scale ranges from 0 to 40, with 

Figure 1: Simulation step 1

Figure 2: Simulation step 2
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intervals of 10, representing the vertical position within the 
environment. Similarly, the X-axis scale ranges from 0 to 
40, with intervals of 10, indicating the horizontal position 
within the environment. The color intensity of each point 
on the graph corresponds to the density of agents present 
at that specific location, with all points having a uniform 
density of 1. The simulation results at simulation step 2 
depict the evolving spatial distribution of agents within 
the human-ecological system, offering insights into the 
dynamic patterns of agent movement and interaction. 
Unlike Simulation Step 1, where agents exhibited random 
movement behavior leading to a scattered distribution 
across the environment, simulation step 2 demonstrates 
a more uniform distribution of agents with a density of 1 
throughout the environment.

The transition from a scattered distribution to a uniform 
distribution of agents reflects the collective behavior 
and interaction dynamics within the simulated system. 
As agents move and interact over time, they redistribute 
themselves within the environment, eventually reaching 
a state of equilibrium where the density of agents is 
uniform across all regions. This phenomenon is observed 
in various real-world systems, such as animal populations 
and human settlements, where spatial patterns emerge 
through iterative processes of movement and interaction. 
The uniform distribution of agents at simulation step 2 
highlights the self-organization and emergent properties 
inherent in complex systems. Through local interactions 
and feedback mechanisms, agents collectively adjust their 
behaviors to adapt to the surrounding environment, leading 
to the formation of spatial patterns and structures. The 
simulation model captures these dynamics by simulating 
individual-level decision-making processes and aggregating 
the resulting behaviors to observe macroscopic patterns at 
the system level.

The visualization of the spatial distribution of agents using 
a color-coded scatter plot facilitates the interpretation of 
simulation results and enables researchers to identify spatial 
patterns and trends in agent behavior. By quantitatively 
representing agent density through color intensity, the 
visualization enhances the understanding of complex 
spatial dynamics within the human-ecological system. This 
approach to data visualization allows for the exploration 
of emergent phenomena and the analysis of system-level 
properties, informing decision-making in environmental 
management and policy development. In the simulation 
results at simulation step 2 demonstrate the emergence of 
a uniform spatial distribution of agents within the human-
ecological system, highlighting the self-organizing dynamics 
inherent in complex systems. The use of computational 
modeling and visualization techniques enables the study 
of spatial patterns and behaviors in human-ecological 
interactions, contributing to the advancement of research 
in environmental science and sustainability.

Simulation Step 3
The graph in Figure 3 depicts the spatial distribution of 
agents within the simulated human-ecological system at 
simulation step 3. The Y-axis scale ranges from 0 to 40, with 
intervals of 10, representing the vertical position within the 
environment. Similarly, the X-axis scale ranges from 0 to 
40, with intervals of 10, indicating the horizontal position 
within the environment. The color intensity of each point 
on the graph corresponds to the density of agents present 
at that specific location, with most points having a density 
close to 1 and a few points reaching a maximum density 
of 2. The simulation results at simulation step 3 reveal the 
continued evolution of the spatial distribution of agents 
within the human-ecological system, reflecting the dynamic 
nature of agent movement and interaction over time. Unlike 
simulation step 2, where a uniform distribution of agents 
was observed, simulation step 3 demonstrates a more varied 
spatial distribution characterized by localized clusters of 
agent activity.

The emergence of localized clusters of agent activity 
can be attributed to the complex interactions and feedback 
mechanisms inherent in the simulated system. As agents 
move and interact with each other and their environment, 
they exhibit tendencies to cluster together based on 
factors such as resource availability, social dynamics, 
and environmental conditions. These localized clusters 
of activity represent areas of heightened agent density 
and activity, where interactions and exchanges between 
agents are more frequent and intense. The observed spatial 
distribution of agents at simulation step 3 exemplifies the 
self-organizing properties of complex systems, where 
macroscopic patterns emerge from local interactions and 
feedback loops. Through iterative processes of movement 
and interaction, agents collectively organize themselves into 
spatial structures and patterns that optimize their adaptive 
behaviors within the environment. This phenomenon 
mirrors real-world dynamics observed in social systems, 
ecological communities, and urban landscapes, where 
localized clusters of activity arise from the interactions and 
behaviors of individual agents.

The visualization of the spatial distribution of agents 
using a color-coded scatter plot enables researchers to 
identify and analyze the formation of localized clusters 
of activity within the human-ecological system. By 
quantitatively representing agent density through color 
intensity, the visualization provides insights into the spatial 
dynamics of agent movement and interaction, facilitating 
the interpretation of simulation results and informing 
decision-making in environmental management and policy 
development. In the simulation results at simulation step 
3 highlight the emergence of localized clusters of agent 
activity within the human-ecological system, underscoring 
the self-organizing dynamics inherent in complex systems. 
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The use of computational modeling and visualization 
techniques enables the study of spatial patterns and 
behaviors in human-ecological interactions, contributing 
to the advancement of research in environmental science 
and sustainability.

Strengths Pie Chart
The pie chart in Figure 4 illustrates the strengths of integrating 
AI and ABM for simulating human-ecological systems, 
focusing on three key aspects: detailed representation, 
simpler dynamics, and more limited data requirements. The 
pie chart visually represents the distribution of strengths 
among these aspects, with detailed representation 
comprising 50%, simpler dynamics accounting for 16.7%, 
and more limited data requirements contributing to 33.3% 
of the total strengths. The pie chart provides insights into the 
relative importance and distribution of strengths associated 
with the integration of AI and ABM for simulating human-
ecological systems. Among the identified strengths, detailed 

representation emerges as the most prominent aspect, 
constituting half of the total strengths. This underscores the 
significance of incorporating detailed and comprehensive 
representations of environmental processes and human-
environment interactions within simulation models. By 
capturing the intricacies and complexities of real-world 
systems, detailed representation enhances the realism 
and accuracy of simulation outcomes, enabling more 
robust analyses and decision-making in environmental 
management.

Simpler dynamics, accounting for 16.7% of the total 
strengths, highlights the advantage of using AI-enhanced 
ABM to model systems with simpler dynamics. While 
complex systems often exhibit nonlinear and dynamic 
behaviors, there are instances where simpler dynamics 
are sufficient for capturing essential system properties 
and behaviors. By leveraging AI techniques to streamline 
model complexity and improve computational efficiency, 
simpler dynamics facilitate the simulation of systems with 
fewer computational resources and shorter simulation 
runtimes. This enables researchers to explore a wider range 
of scenarios and conduct sensitivity analyses, contributing 
to a better understanding of system dynamics and behavior. 
Furthermore, more limited data requirements, comprising 
33.3% of the total strengths, emphasize the benefits of 
using AI-enhanced ABM to mitigate data limitations in 
simulation modeling. Traditional simulation models often 
require extensive data inputs from both human and 
environmental systems, posing challenges in data collection, 
processing, and validation. By integrating AI techniques 
such as machine learning and data-driven algorithms, 
more limited data requirements reduce the reliance on 
extensive datasets and facilitate model calibration and 
validation with fewer inputs. This enhances the accessibility 
and applicability of simulation models, particularly in data-
scarce or resource-constrained settings, where limited 

Figure 3: Simulation step 3

Figure 4: Strengths pie chart
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data availability may hinder modeling efforts. In the pie 
chart provides a comprehensive overview of the strengths 
associated with the integration of AI and ABM for simulating 
human-ecological systems. Detailed representation, simpler 
dynamics, and more limited data requirements offer distinct 
advantages in enhancing model realism, computational 
efficiency, and data accessibility, respectively. By leveraging 
these strengths, researchers can develop more robust 
and insightful simulation models, contributing to the 
advancement of research in environmental science and 
sustainability.

Weaknesses 
The bar plot in Figure 5 illustrates the identified weaknesses 
associated with integrating AI and ABM for simulating 
human-ecological systems. The Y-axis represents the 
different weaknesses, including oversimplified human 
role, data requirements, and difficulty of analysis, with 
corresponding numerical values assigned as follows: 
oversimplified human role - 1, data requirements - 2, 
and difficulty of analysis - 2. The X-axis indicates the 
number of weaknesses, ranging from 0 to 2. The bar 
plot presents a quantitative overview of the identified 
weaknesses in integrating AI and ABM for simulating human-
ecological systems. Among the identified weaknesses, data 
requirements and difficulty of analysis emerge as the most 
significant challenges, both receiving a numerical value of 
2 on the Y-axis. This highlights the critical importance of 
addressing these challenges to enhance the effectiveness 
and applicability of AI-enhanced ABM in simulating complex 
human-environment interactions. Data requirements, 
assigned a numerical value of 2, underscore the challenge 
of acquiring and processing extensive datasets from both 
human and environmental systems for simulation modeling. 
Traditional simulation models often rely on large volumes of 
data inputs to accurately represent the complexities of real-
world systems, including demographic data, environmental 
variables, and socio-economic indicators. However, the 
integration of AI techniques within ABM frameworks may 
exacerbate data requirements by introducing additional 
parameters and variables that necessitate comprehensive 
data collection and validation processes. Addressing 
this weakness requires innovative approaches to data 
acquisition, integration, and management, as well as the 
development of data-efficient modeling techniques that 
leverage AI algorithms to optimize data utilization and 
reduce data dependencies.

Similarly, the difficulty of analysis, also assigned a 
numerical value of 2, highlights the challenges associated 
with analyzing and interpreting simulation results from 
AI-enhanced ABM models. Complex systems dynamics, 
nonlinear interactions, and emergent behaviors inherent 
in human-ecological systems pose challenges in extracting 
meaningful insights and patterns from simulation outputs. 

The integration of AI techniques introduces additional layers 
of complexity, such as high-dimensional data and non-linear 
relationships, which can complicate the analysis process 
and hinder the interpretation of simulation outcomes. 
Addressing this weakness requires the development of 
advanced analytical tools and methodologies tailored 
to AI-enhanced ABM models, including techniques for 
dimensionality reduction, pattern recognition, and 
model validation, to facilitate comprehensive analysis and 
interpretation of simulation results. Furthermore, the bar 
plot highlights the weakness of oversimplified human role, 
assigned a numerical value of 1, indicating the potential 
limitation of AI-enhanced ABM models in adequately 
representing the complexities of human behavior and 
decision-making processes within the simulated system. 

While AI techniques offer powerful tools for modeling 
individual-level behaviors and interactions, they may 
oversimplify the human role to the point of unrealism 
in some scenarios, neglecting important socio-cultural, 
psychological, and institutional factors that influence human 
actions and decision-making. Addressing this weakness 
requires the integration of multidisciplinary perspectives, 
including social sciences, psychology, and economics, to 
develop more nuanced and realistic representations of 
human behavior within ABM frameworks, enhancing the 
fidelity and validity of simulation models in capturing 
human-environment interactions. In the bar plot provides 
a comprehensive overview of the identified weaknesses in 
integrating AI and ABM for simulating human-ecological 
systems, highlighting the challenges related to data 
requirements, difficulty of analysis, and oversimplified 
human role. Addressing these weaknesses is essential to 
enhance the effectiveness and applicability of AI-enhanced 
ABM models in simulating complex human-environment 
interactions and informing evidence-based decision-making 
in environmental management and policy development.

Figure 5: Weaknesses
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Performance Metrics
The graph in Figure 6 represents various performance 
metrics, including accuracy, precision, recall, F1 score, and 
AUC-ROC, associated with the integration of AI and ABM for 
simulating human-ecological systems. The Y-axis displays 
the values of the performance metrics ranging from 0 
to 0.9 with intervals of 0.1, while the X-axis indicates the 
specific metrics being measured, including accuracy (0.7), 
precision (0.72), recall (0.83), F1 score (0.79), and AUC-ROC 
(0.68). The graph provides a comprehensive overview of 
the performance metrics associated with AI-enhanced ABM 
models for simulating human-ecological systems. Each 
metric represents a quantitative measure of the model’s 
predictive accuracy, sensitivity, and overall performance 
in capturing complex human-environment interactions. 
Among the performance metrics, recall emerges as the 
highest, with a value of 0.83, indicating the model’s 
ability to correctly identify positive instances or relevant 
outcomes within the simulated system. This highlights the 
effectiveness of the AI-enhanced ABM approach in capturing 
and representing critical aspects of human-environment 
interactions, contributing to a more comprehensive 
understanding of system dynamics and behavior. Similarly, 
precision and F1 score exhibit relatively high values of 0.72 
and 0.79, respectively, reflecting the model’s precision in 
correctly predicting positive instances and its overall balance 
between precision and recall. These metrics indicate the 
model’s capability to accurately capture relevant events and 
outcomes within the simulated system while minimizing 
false positives and negatives, enhancing the reliability and 
robustness of simulation outcomes.

Accuracy, with a value of 0.7, represents the overall 
correctness of the model’s predictions, indicating the 
proportion of correct predictions among all instances. 
While accuracy is an essential metric for evaluating model 
performance, it should be interpreted in conjunction with 
other metrics such as precision, recall, and F1 score to provide 
a comprehensive assessment of the model’s predictive 
capabilities and limitations. Lastly, the AUC-ROC value 
of 0.68 represents the area under the receiver operating 
characteristic (ROC) curve, which measures the model’s 
ability to discriminate between positive and negative 
instances across different threshold values. While AUC-ROC 
provides valuable insights into the discriminatory power of 
the model, its interpretation should consider the specific 
context and objectives of the simulation model, as well as 
the distribution of positive and negative instances within 
the simulated system. Overall, the performance metrics 
presented in the graph demonstrate the effectiveness 
and reliability of AI-enhanced ABM models in simulating 
human-ecological systems and capturing complex system 
dynamics and behaviors. By quantitatively assessing model 
performance across various metrics, researchers can gain 

insights into the strengths and limitations of the integrated 
approach, informing evidence-based decision-making in 
environmental management and policy development.

Conclusion 
•	 Comprehensive integration of AI and ABM techniques 

has been demonstrated to effectively simulate human-
ecological systems, enabling the exploration of complex 
interactions and dynamics.

•	 The study showcases the development of a simulation 
model incorporating AI-enhanced decision-making 
within an ABM framework, providing a detailed 
representation of human-environment interactions.

•	 Through rigorous analysis of model performance 
metrics, including accuracy, precision, recall, and F1 
score, the study highlights the reliability and robustness 
of the integrated AI-ABM approach in capturing system 
dynamics.

•	 Data visualization techniques, particularly using 
Matplotlib, have been instrumental in interpreting 
simulation results and performance metrics, facilitating 
the communication of research findings and informing 
decision-making in environmental management and 
policy development.

•	 Identified strengths of the integrated approach include 
detailed representation, simpler dynamics, and more 
limited data requirements, while challenges such as 
oversimplified human role, data requirements, and 
difficulty of analysis underscore areas for further 
improvement and interdisciplinary collaboration.

References 
Agrawal, S. S. (2023). Scalable agent-based models for optimized 

policy design: applications to the economics of biodiversity 
and carbon (No. UCAM-CL-TR-985). University of Cambridge, 
Computer Laboratory.

Allison, A. (2020). Developing a methodology for transdisciplinary 
modelling of complex human-environment systems (Doctoral 
dissertation, ResearchSpace@ Auckland).

Anderson, T., Leung, A., Dragicevic, S., & Perez, L. (2021). Modeling 
the geospatial dynamics of residential segregation in three 
Canadian cities: An agent‐based approach. Transactions in 
GIS, 25(2): 948-967.

Figure 6: Performance metrics



3855	 Integration of AI And agent-based modeling for simulating human-ecological systems

Bi, C., & Little, J. C. (2022). Integrated assessment across building 
and urban scales: A review and proposal for a more holistic, 
multi-scale, system-of-systems approach. Sustainable Cities 
and Society, 82, 103915.

Burger, A. G. (2020). Disaster through the lens of complex adaptive 
systems: Exploring emergent groups utilizing agent based 
modeling and social networks (Doctoral dissertation, George 
Mason University).

Farahbakhsh, I., Bauch, C. T., & Anand, M. (2022). Modelling 
coupled human–environment complexity for the future of 
the biosphere: strengths, gaps and promising directions. 
Philosophical Transactions of the Royal Society B, 377(1857): 
20210382.

Fotsing, E., Kakeu, S. V. T., Kameni, E. D., & Nkenlifack, M. J. A. (2023). 
An Actor-Oriented and Architecture-Driven Approach for 
Spatially Explicit Agent-Based Modeling. Complex Systems 
Informatics & Modeling Quarterly, (36).

Guo, R., Wu, T., Wu, X., Luigi, S., & Wang, Y. (2022). Simulation 
of urban land expansion under ecological constraints in 
Harbin-Changchun urban agglomeration, China. Chinese 
geographical science, 32(3): 438-455.

Leitzke, B., & Adamatti, D. (2021). Multiagent system and rainfall-
runoff model in hydrological problems: a systematic 
literature review. Water, 13(24): 3643.

Liu, C., Deng, C., Li, Z., Liu, Y., & Wang, S. (2022). Optimization of 
spatial pattern of land use: Progress, frontiers, and prospects. 
International Journal of Environmental Research and Public 
Health, 19(10): 5805.

Magargal, K., Wilson, K., Chee, S., Campbell, M. J., Bailey, V., 
Dennison, P. E., ... & Codding, B. F. (2023). The impacts of 
climate change, energy policy and traditional ecological 
practices on future firewood availability for Diné (Navajo) 

People. Philosophical Transactions of the Royal Society B, 
378(1889): 20220394.

Mashaly, A. F., & Fernald, A. G. (2020). Identifying capabilities 
and potentials of system dynamics in hydrology and water 
resources as a promising modeling approach for water 
management. Water, 12(5): 1432.

Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence 
for sustainability: Challenges, opportunities, and a research 
agenda. International Journal of Information Management, 
53, 102104.

Peart, D. C. (2021). Social and ecological dynamics of forager 
mobility: An agent-based modeling study of Middle Stone Age 
archaeology in southern Africa (Doctoral dissertation, The 
Ohio State University).

Rosa, E. P., & Ramos-Martín, J. (Eds.). (2023). Elgar Encyclopedia of 
Ecological Economics. Edward Elgar Publishing.

Shults, F. L., Wildman, W. J., Toft, M. D., & Danielson, A. (2021, 
December). Artif icial societies in the anthropocene: 
Challenges and opportunities for modeling climate, conflict, 
and cooperation. In 2021 Winter Simulation Conference (WSC) 
(pp. 1-12). IEEE.

Sottile, M., Iles, R., McConnel, C., Amram, O., & Lofgren, E. (2021). 
PastoralScape: an environment-driven model of vaccination 
decision making within pastoralist groups in East Africa. 
Journal of Artificial Societies and Social Simulation, 24(LLNL-
JRNL-814398).

Sturtevant, B. R., & Fortin, M. J. (2021). Understanding and modeling 
forest disturbance interactions at the landscape level. 
Frontiers in Ecology and Evolution, 9, 653647.

Turner, B. L., Meyfroidt, P., Kuemmerle, T., Müller, D., & Roy 
Chowdhury, R. (2020). Framing the search for a theory of land 
use. Journal of Land Use Science, 15(4): 489-508.


