Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.05Keywords:
Wireless sensor networks, Energy efficiency, Modified K-means clustering, Teaching-learning soccer league optimization, Recurrent artificial neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Energy efficiency in wireless sensor networks (WSNs) is a crucial and fundamental design consideration. These networks typically consist of numerous small, resource-constrained sensor nodes, frequently placed in isolated or difficult-to-reach areas. This research presents a comprehensive methodology for improving the performance and energy efficiency of WSNs deployed in a designated target area. The research begins with the deployment of sensor nodes equipped with location information and the initialization of critical network parameters. Novel techniques are introduced for efficient node clustering using a Haversine-based K-means Clustering algorithm (HKMC) and an advanced hybrid optimization model, teaching-learning soccer league optimization (TLSLO), for optimal cluster head selection within clusters. Data aggregation at cluster heads is crucial for conserving energy, and data compression techniques, including the novel weighted discrete wavelet transform (WDWT)), are employed to reduce data transmission size. Furthermore, deep learning models in the form of recurrent artificial neural networks (RANN) predict energy consumption patterns, enabling the optimization of node sleep-wake schedules for a prolonged network lifetime. Simulated using Python, the proposed protocol’s performance is evaluated, demonstrating its superiority in terms of energy efficiency, latency, network lifetime, and data delivery ratio compared to existing routing protocols. This research offers a holistic approach to improving WSNs enhancing their efficiency and sustainability in resource-constrained environments.Abstract
How to Cite
Downloads
Similar Articles
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Chinnadurai U, A. Vinayagam, Energy efficient routing with cluster approach in wireless networks – A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper