IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.20Keywords:
Big Data, Local Approximated Fuzzy Clustering, physical health condition, smart healthcare, Internet of ThingsDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Big Data is a collection of large amount used to store and to process for future use. Internet of Things (IoT) technology is used in smart home, smart healthcare. IoT has limited resources like processing capability and supplied energy. Many researchers carried out their research on resource optimized data clustering in bigdata environment. But, the computational complexity and energy consumption was not reduced by existing techniques. Therefore, IoT based Energy Aware Local Approximated Fuzzy MapReduce Clustering (IoT-EALAFMRC) Method is introduced. The main objective of IoT-EALAFMRC Method is introduced to perform an efficient priority based data transmission in smart healthcare environment. Initially, IoT devices are used to collect the large number of patient data in different location at a same time. During data transmission, there is a chance of traffic occurrence. In order to reduce the traffic occurrence rate during the data transmission to the physician (i.e., doctor), Energy Aware Local Approximated Fuzzy MapReduce Clustering is used with map and reduce function to group the patient data into normal constrained data or emergency constrained data based on physical health condition with higher clustering accuracy. IoT-EALAFMRC Method performs the cluster assignment based on neighborhood relationships among data. After clustering of patient data, the data is sent to the physician with minimum time consumption. Through minimizing the traffic, retransmission of patient data gets reduced. This in turn helps to reduce the energy consumption. Experimental evaluation is carried out using IoT-EALAFMRC Method on factors such as energy consumption, clustering accuracy and execution time for different number of patient data.Abstract
How to Cite
Downloads
Similar Articles
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Madhuri Prashant Pant, Jayshri Appaso Patil, Unlocking the potential of big data and analytics significance, applications in diverse domains and implementation of Apache Hadoop map/reduce for citation histogram , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Poornima Dave, Aditi Shrimali, MATRIMANAS digital app for maternal mental healthcare: A research proposal , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper