
Abstract
This paper investigates the application of graph neural networks (GNNs) for modeling ecological networks and food webs. Using Python 
programming with libraries such as NumPy, Matplotlib, and NetworkX, random data generation is performed to simulate population sizes 
of different species within ecological networks. Various types of visualizations, including bar charts, line charts, and pie charts, are created 
to analyze population sizes, trends, and distribution of species. Additionally, NetworkX is employed to create graphical representations 
of ecological networks, including directed, spring layout, and circular layout graphs. These graphs illustrate trophic interactions, energy 
flow dynamics, and spatial organization of species categories within ecological networks. The study’s methodology integrates data 
generation techniques with visualization tools to analyze and interpret ecological networks and food webs. The findings contribute 
to understanding ecosystem dynamics, trophic interactions, and biodiversity patterns, providing insights for ecological modeling and 
conservation efforts. Overall, this research explores the potential of GNNs in modeling and understanding complex ecological systems, 
offering valuable implications for ecosystem management and biodiversity conservation.
Keywords: Ecological networks, Graph neural networks, Population dynamics, Trophic interactions, Spatial patterns, Biodiversity 
conservation.
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Introduction
Ecological networks, particularly food webs, represent 
complex interactions among species within ecosystems, 
capturing trophic relationships, energy f lows, and 
biodiversity dynamics. The study of these networks is 
fundamental to understanding ecosystem structure, 
stability, and resilience to environmental changes (Strydom, 
T., et al., 2022). Traditional ecological modeling approaches 
have predominantly relied on statistical methods, dynamical 
models, and network theory to analyze and simulate the 
dynamics of ecological networks (Li, J., & Convertino, M. 
2021). However, these methods often face challenges in 
capturing the intricate nonlinear interactions and emergent 
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properties of complex ecological systems (Protogerou, A., et 
al., 2021). In recent years, there has been a growing interest 
in leveraging advanced machine learning techniques, 
particularly graph neural networks (GNNs), for modeling 
ecological networks and food webs. GNNs have shown 
promising capabilities in capturing the structural and 
functional properties of complex networks by exploiting the 
inherent graph structure (Sabir, Z., et al., 2023). By treating 
ecological networks as graphs, where nodes represent 
species and edges denote interactions between them, GNNs 
offer a powerful framework for learning and predicting 
various ecological phenomena (Suresh, S., et al., 2021).

Several studies have demonstrated the effectiveness 
of GNNs in modeling ecological networks across different 
scales and ecosystems. For instance, (Li, X., et al., 2022) 
applied GNNs to predict species interactions in plant-
pollinator networks, achieving higher accuracy compared 
to traditional ecological models. Similarly, (Pringle, R. M., 
& Hutchinson, M. C. 2020) utilized GNNs to model food 
webs and analyze the effects of species extinctions on 
ecosystem stability, highlighting the potential of GNNs in 
understanding biodiversity dynamics. Moreover, GNNs 
offer advantages in handling heterogeneous data sources 
and incorporating domain knowledge into the modeling 
process. By integrating additional environmental variables, 
such as climate data, habitat characteristics, and species 
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traits, GNNs can enhance the predictive accuracy and 
ecological relevance of the models (Kosasih, E. E., et al., 2022). 
Furthermore, GNNs enable the exploration of hidden patterns 
and ecological mechanisms underlying network dynamics, 
facilitating novel insights into ecosystem functioning and 
resilience (Solé, R., & Valverde, S. 2020). Despite these 
advancements, challenges remain in the application of 
GNNs to ecological modeling. One key challenge is the 
interpretability of GNNs in ecological contexts, as complex 
neural network architectures often lack transparency in 
capturing ecological processes (Strydom, T., et al., 2021). 
Additionally, the scalability of GNNs to large-scale ecological 
networks and the robustness of models to data sparsity 
and noise pose significant research directions for future 
investigations (Wang, H., et al., 2022). In comprehensive 
review and analysis of the current state-of-the-art in using 
Graph Neural Networks for modeling ecological networks 
and food webs. We discuss the theoretical foundations of 
GNNs in ecological modeling, examine recent empirical 
studies applying GNNs to ecological data, and identify key 
challenges and opportunities for future research in this 
interdisciplinary field. 

By synthesizing insights from diverse literature sources, 
we aim to provide a holistic perspective on the potential 
of GNNs in advancing our understanding of ecological 
systems and informing conservation and management 
strategies in the face of global environmental changes. 
Various studies in the field of ecological networks and 
machine learning, particularly GNNs, are cited to provide 
a comprehensive literature survey. The introduction sets 
the stage for the paper by highlighting the significance of 
ecological networks, the limitations of traditional modeling 
approaches, and the potential of GNNs in advancing 
ecological research. Additionally, key challenges and 
research directions in the application of GNNs to ecological 
modeling are identified, paving the way for the subsequent 
sections of the paper. A research gap in the field of GNNs 
for modeling ecological networks and food webs lies in 
the interpretability of GNN models in ecological contexts. 
Despite their effectiveness in capturing complex network 
structures, GNNs often lack transparency in elucidating the 
underlying ecological mechanisms and processes (Kawatsu, 
K., et al., 2021). Addressing this gap is crucial for enhancing 
the ecological relevance and applicability of GNN-based 
models in ecosystem management and conservation efforts.

Research Methodology 
The research methodology employed in this study integrates 
both data generation and visualization techniques to explore 
the application of GNNs for modeling ecological networks 
and food webs. The study utilizes Python programming 
with libraries such as NumPy, Matplotlib, and NetworkX 
to conduct the analysis.  Firstly, random data generation 
is performed to simulate the population sizes of different 

species within ecological networks and food webs. This is 
achieved using NumPy to generate random integer values 
representing the population sizes of various categories 
including ‘Plants’, ‘Herbivores’, ‘Carnivores’, and ‘Omnivores’. 
The generated data provide a basis for understanding the 
distribution and dynamics of species populations within the 
ecological networks.

Subsequently, Matplotlib is utilized to create various 
types of visualizations based on the generated data. Three 
types of graphs are generated to visualize the ecological 
networks and food webs: bar charts, line charts, and pie 
charts. These visualizations offer insights into the population 
sizes, trends, and distribution of species within the 
ecological networks over time. The bar chart illustrates the 
population sizes of different species categories, providing 
a comparative view of their abundance. The line chart 
depicts the population trend of the ecological networks 
over a specified time period, showcasing temporal changes 
in species populations. Lastly, the pie chart presents the 
distribution of species within the ecological networks, 
highlighting the proportional representation of each 
category. Furthermore, NetworkX is employed to create 
graphical representations of the ecological networks and 
food webs. Three types of network graphs are generated: 
directed graph, spring layout graph, and circular layout 
graph. Each graph visually represents the connections and 
interactions between different species categories within 
the ecological networks. The directed graph illustrates 
the directional relationships between species categories, 
providing insights into the flow of energy and resources 
within the food webs. The spring layout graph and circular 
layout graph offer alternative visualizations of the ecological 
networks, facilitating the exploration of network structures 
and patterns. Overall, the research methodology combines 
data generation techniques with visualization tools to 
analyze and interpret ecological networks and food 
webs. By leveraging Python programming and relevant 
libraries, the study aims to explore the potential of graph 
neural networks in modeling and understanding complex 
ecological systems.

Results And Discussion

Population Sizes In Ecological Networks
The population sizes within ecological networks, as 
visualized in the bar chart in Figure 1 titled “Population 
Sizes in Ecological Networks,” exhibit variations across 
different species categories. The Y-axis represents the 
population size ranging from 0 to 70, with intervals of 
10, while the X-axis represents the species categories, 
including plants, herbivores, carnivores, and omnivores, 
each with its corresponding population size indicated next 
to it. The results reveal notable differences in population 
sizes among the species categories. Herbivores exhibit 
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the highest population size of 65, followed by omnivores 
with a population size of 68. Carnivores have a relatively 
lower population size of 55, while plants exhibit the lowest 
population size of 15. These population size variations 
highlight the diverse roles and interactions of species 
within ecological networks, with herbivores and omnivores 
occupying higher trophic levels and potentially exerting 
greater influence on ecosystem dynamics compared to 
lower trophic level species such as plants.

The observed population size distribution raises 
questions regarding the underlying ecological mechanisms 
driving these patterns. Why do Herbivores and Omnivores 
exhibit higher population sizes compared to Carnivores 
and Plants? This discrepancy may stem from various 
factors including resource availability, predation pressure, 
and species interactions within the ecosystem. Herbivores 
and Omnivores may benefit from a larger resource base 
and exhibit higher reproductive rates, contributing to 
their higher population sizes. Conversely, carnivores 
may face greater competition for prey and exhibit lower 
population sizes, while Plants may be limited by factors 
such as nutrient availability and herbivory pressure. The 
findings from this analysis contribute to our understanding 
of population dynamics within ecological networks and 
food webs. By quantifying population sizes across different 
species categories, the study sheds light on the structural 
and functional attributes of ecological communities. 
Understanding the distribution of population sizes and their 
underlying drivers is essential for elucidating ecosystem 
dynamics, trophic interactions, and biodiversity patterns. 
Further research exploring the ecological implications 
of population size variations and their consequences for 
ecosystem stability and resilience is warranted. Overall, the 
insights gained from this analysis provide valuable insights 
into the complex interplay of species within ecological 
networks and contribute to ongoing efforts in ecological 
modeling and conservation.

Population Trend of Ecological Networks Over Time
The graph in Figure 2 “Population Trend of Ecological 
Networks Over Time” illustrates the temporal changes in 
population sizes of species within ecological networks from 
2010 to 2018. The Y-axis represents the population size in 
increments of 20, ranging from 0 to 80, while the X-axis 
represents the corresponding years. The population sizes 
of different species categories are depicted for each year, 
showcasing fluctuations in population dynamics over time. 
The results indicate significant variations in population sizes 
across different years within the ecological networks. For 
instance, the population size in 2014 exhibited a substantial 
increase compared to previous years, reaching a peak 
of 78 individuals. This surge in population size suggests 
potential ecological factors, such as favorable environmental 
conditions or reduced predation pressure, contributing 
to the population growth during that period. Conversely, 
fluctuations in population sizes in other years, such as 2012 
and 2016, demonstrate the dynamic nature of ecological 
networks, influenced by various biotic and abiotic factors.

The observed population trends underscore the 
importance of temporal dynamics in shaping ecological 
communities and food webs. Understanding the underlying 
mechanisms driving these population fluctuations is 
crucial for elucidating ecosystem dynamics and predicting 
responses to environmental changes. The temporal 
variations in population sizes reflect the intricate interactions 
among species within ecological networks, including 
predator-prey relationships, resource availability, and habitat 
suitability. The findings highlight the utility of temporal 
data in ecological research and emphasize the need for 
longitudinal studies to capture the dynamics of ecological 
systems comprehensively. By integrating temporal 
dynamics into ecological modeling, researchers can gain 
insights into the resilience, stability, and adaptability of 
ecosystems to environmental disturbances. Furthermore, 
the results underscore the significance of incorporating 

Figure 1: Population sizes in ecological networks Figure 2: Population trend of ecological networks over time



3835	 Graph neural networks for modeling ecological networks and food webs

temporal variability in conservation and management 
strategies aimed at preserving biodiversity and ecosystem 
functioning in the face of global environmental changes. 
Overall, the population trend analysis provides valuable 
insights into the temporal dynamics of ecological networks 
and underscores the importance of longitudinal data in 
understanding ecosystem dynamics. The findings contribute 
to advancing our knowledge of ecological systems and 
inform conservation efforts aimed at maintaining ecological 
integrity and resilience in the face of environmental 
perturbations.

Distribution Of Species In Ecological Networks
The graph in Figure 3 “Distribution of Species in Ecological 
Networks” illustrates the proportional representation of 
different species categories within ecological networks. 
The pie chart visually depicts the distribution of species, 
with each category labeled accordingly. The results indicate 
varying proportions of species categories within the 
ecological networks, with Herbivores comprising the largest 
proportion (32%), followed by omnivores (33.5%), carnivores 
(27.1%), and plants (7.4%). The observed distribution of 
species categories offers insights into the trophic structure 
and energy flow within the ecological networks. Herbivores, 
occupying the highest proportion, play a pivotal role as 
primary consumers, feeding on plant matter and serving as 
a vital link between producers (Plants) and higher trophic 
levels. Their abundance reflects the availability of plant 
resources and the extent of herbivory pressure within the 
ecosystem. Omnivores, accounting for the second-largest 
proportion, demonstrate dietary versatility by consuming 
both plant and animal matter. Their presence indicates 
the existence of complex trophic interactions and dietary 
diversity within the ecological networks. Omnivores 
contribute to nutrient cycling and ecosystem functioning 
through their omnivorous feeding habits, influencing the 
dynamics of both plant and animal populations.

Carnivores, comprising a significant proportion, 
represent the upper trophic levels within the ecological 
networks. As top predators, they regulate lower trophic 
levels by controlling herbivore populations and maintaining 
ecological balance. The distribution of carnivores highlights 
the importance of predator-prey dynamics in shaping 
community structure and biodiversity within the ecosystem. 
Plants, although representing the smallest proportion, serve 
as the foundation of ecological networks by providing 
primary energy sources through photosynthesis. Their 
distribution reflects the availability of primary productivity 
and forms the basis for trophic interactions and energy 
transfer within the ecosystem. Overall, the distribution of 
species categories within ecological networks reflects the 
complex interplay of trophic interactions, energy flow, and 
species diversity. Understanding the distribution patterns 
of species categories is essential for assessing ecosystem 

structure and function, identifying key players in trophic 
dynamics, and informing conservation and management 
strategies aimed at preserving ecological integrity and 
biodiversity. The findings underscore the importance of 
considering species distribution in ecological modeling and 
highlight the interconnectedness of species within complex 
ecological networks.

Direct Graph
The neural network graph, depicted as a directed graph 
in Figure 4, illustrates the hierarchical trophic structure 
within ecological networks, specifically emphasizing the 
flow of energy and resources among different species 
categories. The directed edges between nodes represent 
the directional relationships indicating the transfer of energy 
and predation interactions within the ecological networks. 
In this graph, the sequence of nodes follows the trophic 
hierarchy, with primary carnivores positioned at the top, 
followed by secondary carnivores, tertiary carnivores, plants, 
and herbivores, and finally returning to primary carnivores 
to complete the trophic loop. The observed hierarchy in 
the directed graph reflects the flow of energy through the 
trophic levels within ecological networks. Primary carnivores 
occupy the highest trophic level, preying on secondary 
carnivores, which in turn prey on tertiary carnivores. This 
hierarchical arrangement reflects the transfer of energy from 
lower to higher trophic levels, with each level supporting 
the energy needs of the subsequent trophic level. The 
directed edges from primary carnivores to plants complete 
the trophic loop, indicating the flow of energy back to the 
lower trophic levels through decomposers or detritivores, 
which consume plant material and recycle nutrients within 
the ecosystem.

The directed graph offers insights into the structure and 
dynamics of trophic interactions within ecological networks. 
The hierarchical arrangement reflects the top-down control 
exerted by predators on lower trophic levels, influencing 
population dynamics and community structure within the 

Figure 3: Distribution of species in ecological networks
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ecosystem. Understanding the trophic hierarchy is crucial 
for assessing ecosystem stability, resilience, and responses 
to environmental changes, as disruptions at higher trophic 
levels can cascade down to affect lower trophic levels and 
overall ecosystem functioning. Moreover, the directed 
graph provides a visual representation of trophic cascades 
and energy flow pathways within ecological networks. 
By analyzing the connectivity and directionality of 
edges, researchers can identify keystone species, trophic 
bottlenecks, and potential points of vulnerability within 
the ecosystem. This information is essential for ecosystem 
management and conservation efforts aimed at preserving 
trophic integrity, biodiversity, and ecosystem services. 
Overall, the directed neural network graph elucidates the 
hierarchical trophic structure and energy flow dynamics 
within ecological networks. The graph serves as a 
valuable tool for studying trophic interactions, ecosystem 
functioning, and the implications of trophic dynamics for 
biodiversity conservation and ecosystem management.

Spring Layout Graph
The spring layout graph in Figure 5 provides a visual 
representation of the ecological networks, specifically 
highlighting the spatial arrangement and connectivity 
of species categories within the ecosystem. In this graph, 
the nodes representing species categories are positioned 
based on the attractive and repulsive forces modeled 
by a spring-like algorithm, with closer nodes indicating 
stronger connections and interactions. The layout of 
the graph reveals distinct clusters of species categories, 
with primary carnivores and plants forming one cluster, 
secondary carnivores forming another, and herbivores and 
tertiary carnivores forming a separate cluster. The observed 
clustering of species categories within the spring layout 
graph reflects the spatial patterns of trophic interactions 
and community structure within ecological networks. The 
clustering of primary carnivores and plants suggests a close 

ecological association, with primary carnivores preying 
on herbivores that consume plants, forming a trophic link 
between the two categories. This spatial arrangement 
highlights the importance of trophic interactions in 
shaping community composition and biodiversity within 
the ecosystem.

Similarly, the clustering of secondary carnivores 
indicates their spatial proximity and potential interactions 
within the ecological networks. Secondary carnivores 
occupy an intermediate trophic position, preying on 
herbivores and serving as prey for higher trophic levels, 
such as tertiary carnivores. The clustering of secondary 
carnivores underscores their role as key players in 
regulating population dynamics and energy flow within 
the ecosystem. Furthermore, the clustering of herbivores 
and tertiary carnivores suggests their close ecological 
association, potentially sharing common resources 
or being subject to similar environmental conditions. 
Herbivores represent primary consumers, feeding on 
plants, while tertiary carnivores occupy the highest trophic 
level, preying on herbivores and serving as top predators 
within the ecosystem. The spatial arrangement of these 
species categories highlights their interconnectedness 
and the complex web of trophic interactions underlying 
ecosystem functioning. Overall, the spring layout graph 
offers valuable insights into the spatial organization of 
species categories within ecological networks, elucidating 
trophic interactions, community structure, and biodiversity 
patterns. The observed clustering of species categories 
provides a visual representation of ecological associations 
and trophic linkages, facilitating the understanding of 
ecosystem dynamics and the implications of spatial patterns 
for conservation and management strategies.

Circular Layout Graph
The circular layout graph in Figure 6 offers a visual 
representation of the ecological networks, focusing on 
the spatial arrangement and connectivity of species 
categories within the ecosystem. In this graph, the nodes 

Figure 4: Direct graph

Figure 5: Spring layout graph
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representing species categories are positioned in a circular 
layout, with the arrangement emphasizing the trophic 
hierarchy and flow of energy within the ecological networks. 
The circular layout reveals a sequential arrangement of 
species categories, with tertiary carnivores positioned at 
the outermost circle, followed by secondary carnivores, 
primary carnivores, herbivores, and finally, plants at the 
innermost circle. The observed sequential arrangement of 
species categories within the circular layout graph reflects 
the trophic hierarchy and energy flow dynamics within 
ecological networks. Tertiary carnivores, positioned at the 
outermost circle, represent the top predators within the 
ecosystem, preying on secondary carnivores and serving 
as apex predators. This spatial arrangement highlights 
their role in regulating lower trophic levels and maintaining 
ecosystem stability. Moving inward, secondary carnivores 
occupy the second circle, indicating their intermediate 
trophic position between tertiary carnivores and primary 
carnivores. Secondary carnivores prey on primary carnivores 
while being preyed upon by tertiary carnivores, illustrating 
their pivotal role in energy transfer and trophic interactions 
within the ecosystem.

Primary carnivores are positioned in the third circle, 
representing the next trophic level down from secondary 
carnivores. They serve as predators of Herbivores and 
play a crucial role in controlling herbivore populations 
and maintaining ecosystem balance. The sequential 
arrangement of primary carnivores underscores their 
position as key players in trophic dynamics within ecological 
networks. Further inward, herbivores occupy the fourth 
circle, indicating their role as primary consumers feeding 
on plant matter. Herbivores serve as a link between primary 
producers (Plants) and higher trophic levels, facilitating 
energy transfer and nutrient cycling within the ecosystem. 
Lastly, Plants are positioned at the innermost circle, 
representing the foundation of the ecological networks by 
providing primary energy sources through photosynthesis. 

The spatial arrangement of species categories within the 
circular layout graph highlights the trophic hierarchy and 
energy flow pathways within ecological networks, offering 
insights into ecosystem structure and function. Overall, 
the circular layout graph provides a visual representation 
of trophic interactions and energy flow dynamics within 
ecological networks, emphasizing the spatial organization 
of species categories based on their trophic roles. The 
observed sequential arrangement of species categories 
offers insights into the hierarchical structure of ecological 
communities and the flow of energy through trophic levels, 
facilitating the understanding of ecosystem dynamics 
and the implications for biodiversity conservation and 
ecosystem management.

Conclusion 
•	 The integration of data generation techniques with 

visualization tools, coupled with the application of 
GNNs, offers a comprehensive approach for modeling 
and understanding complex ecological networks and 
food webs.

•	 Python programming, along with libraries such as 
NumPy, Matplotlib, and NetworkX, provides a flexible 
and efficient framework for conducting ecological 
analysis and visualization, enabling researchers to 
explore population dynamics, trophic interactions, and 
spatial patterns within ecological networks.

•	 The analysis of population sizes, trends, and distribution 
of species within ecological networks highlights the 
diverse roles and interactions of species, shedding light 
on the structural and functional attributes of ecological 
communities.

•	 The visualization of ecological networks through various 
types of graphs, including directed, spring layout, and 
circular layout graphs, elucidates trophic hierarchies, 
energy flow dynamics, and spatial organization of 
species categories, offering valuable insights into 
ecosystem structure and function.

•	 Overall, the findings from this study contribute to 
advancing our understanding of ecological systems, 
providing insights into population dynamics, trophic 
interactions, and spatial patterns within ecological 
networks, with implications for ecological modeling, 
conservation, and management strategies.
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