Graph neural networks for modeling ecological networks and food webs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.15Keywords:
Ecological networks, Graph Neural Networks (GNNs), Population dynamics, Trophic interactions, Spatial patterns, Biodiversity conservationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper investigates the application of Graph Neural Networks (GNNs) for modeling ecological networks and food webs. Using Python programming with libraries such as NumPy, Matplotlib, and NetworkX, random data generation is performed to simulate population sizes of different species within ecological networks. Various types of visualizations, including bar charts, line charts, and pie charts, are created to analyze population sizes, trends, and distribution of species. Additionally, NetworkX is employed to create graphical representations of ecological networks, including directed, spring layout, and circular layout graphs. These graphs illustrate trophic interactions, energy flow dynamics, and spatial organization of species categories within ecological networks. The study's methodology integrates data generation techniques with visualization tools to analyze and interpret ecological networks and food webs. The findings contribute to understanding ecosystem dynamics, trophic interactions, and biodiversity patterns, providing insights for ecological modeling and conservation efforts. Overall, this research explores the potential of GNNs in modeling and understanding complex ecological systems, offering valuable implications for ecosystem management and biodiversity conservation.Abstract
How to Cite
Downloads
Similar Articles
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- S. S. Rath, SEX RATIO AND FREQUENCY DISTRIBUTION OF COCOON WEIGHT IN WILD AND REARED VARIETY OF ANTHERAEA MYLITTA , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rimpi Manna, Anitha Arvind, Correlation between ocular surface disease index scores, tear film characteristics, and screen time usage among young adults , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rakhimov S. Bekturdievich, Grave structures of the population of the lower part of the Amudarya in the islamic period (On the example of archeological monuments of IX-XIII centuries) , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- B. R. JAIPAL, POPULATION STRUCTURE OF NILGAI (BOSELAPHUS TRAGOCAMELUS) IN THE SEMI ARID REGION OF THE THAR DESERT , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- NAVEEN KUMAR SHARMA, KAPIL KUMAR, A REVIEW OF HIMALAYAN BIODIVERSITY WITH REFERENCE TO UTTARAKHAND , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

