Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.24Keywords:
CatBoost, Dynamic Gradient-Sharing, Ensemble learning, Feature selection, Heart disease, Neural Networks, Recursive Feature Elimination, SHAPDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Heart disease remains one of the leading causes of mortality globally, necessitating accurate and efficient prediction models. This paper presents a novel ensemble model combining CatBoost and neural networks (ECNN) to improve heart disease prediction accuracy. The proposed methodology incorporates two key innovations: the sequential SHAP and RFE hybrid optimization (SSHO) technique for feature selection and the dynamic gradient-sharing mechanism (DGSM) to facilitate efficient interaction between CatBoost and neural networks. SSHO dynamically selects relevant features based on SHAP values, while DGSM shares gradient information to optimize learning. The ECNN model was trained using the personal key indicators of heart disease dataset, addressing class imbalance with SMOTE. The experimental results demonstrate the model’s superior performance with an accuracy of 91%, precision of 94%, and F1-score of 92%. These findings surpass previous studies’ results and highlight the ECNN model’s novelty in improving prediction accuracy and interpretability. The integration of SSHO and DGSM offers a scalable approach to heart disease prediction, making it a valuable contribution to clinical decision support systems.Abstract
How to Cite
Downloads
Similar Articles
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. A. Shanthi, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper