Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.33Keywords:
Class imbalance, Machine learning, Ensemble techniques, Sampling methods, Feature SelectionDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Imbalanced medical datasets pose a significant challenge for predictive modelling. The current study presents a new method of performing feature selection specifically for the imbalanced medical datasets to improve accuracy of the predictions. The proposed Multi-Objective Feature Selection with Cost-Sensitive (MOFSCS)algorithm leverages the large-scale exploration capability of the Squirrel Search to generate diverse candidate feature subsets and employs Tabu Search for local optima refinement. One of the key developments is learning with consideration of costs, which is closer to the identification of the minority class. The effectiveness of the proposed approach is ensured by the experiments on different imbalanced medical datasets, namely, heart disease and stroke prediction datasets. The results reveal that the proposed method, when integrated with the XGBoost classifier, achieves a precision of 98.5%, recall of 98.7%, F1-score of 98.6%, accuracy of 98.7%, and an AUC-ROC of 98.7% on the heart disease dataset. Similarly, for brain stroke prediction, the model attains a precision of 98.9%, recall of 99.0%, F1-score of 98.9%, accuracy of 99.0%, and an AUC-ROC of 99.0%.Abstract
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- NITHYA R, shruthi D, Sindhuja S, Sneha S, Challenges encountered by health care professionals in monitoring adverse events due to medical devices: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper