Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.26Keywords:
Feature Selection, Filter based Feature Selection, Wrapper Approach, Optimization Technique, Clinical dataset.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection is a critical preprocessing step in the development of machine learning models, particularly in the healthcare domain, where datasets often contain numerous features that may not contribute significantly to predictive performance. This study presents a comparative analysis of various feature selection techniques applied to healthcare datasets, evaluating their effectiveness in improving model accuracy and reducing computational costs. We investigate traditional filter-based methods, such as information gain and chi-square, alongside wrapper-based approaches and hybrid techniques that combine the strengths of both. Using multiple healthcare datasets encompassing diverse medical conditions, we assess the impact of these techniques on classification performance using metrics such as accuracy, precision, recall, and F1-score. Additionally, we analyze the robustness and scalability of each method in handling high-dimensional data. The findings reveal significant differences in performance, highlighting the strengths and weaknesses of each feature selection approach within the healthcare context. This comparative study provides valuable insights for researchers and practitioners, guiding them in selecting appropriate feature selection techniques to enhance predictive modeling in healthcare applications.Abstract
How to Cite
Downloads
Similar Articles
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- G Vanitha, M Kasthuri, A robust feature selection approach for high-dimensional medical data classification using enhanced correlation attribute evaluation , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

