Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.26Keywords:
Feature Selection, Filter based Feature Selection, Wrapper Approach, Optimization Technique, Clinical dataset.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Feature selection is a critical preprocessing step in the development of machine learning models, particularly in the healthcare domain, where datasets often contain numerous features that may not contribute significantly to predictive performance. This study presents a comparative analysis of various feature selection techniques applied to healthcare datasets, evaluating their effectiveness in improving model accuracy and reducing computational costs. We investigate traditional filter-based methods, such as information gain and chi-square, alongside wrapper-based approaches and hybrid techniques that combine the strengths of both. Using multiple healthcare datasets encompassing diverse medical conditions, we assess the impact of these techniques on classification performance using metrics such as accuracy, precision, recall, and F1-score. Additionally, we analyze the robustness and scalability of each method in handling high-dimensional data. The findings reveal significant differences in performance, highlighting the strengths and weaknesses of each feature selection approach within the healthcare context. This comparative study provides valuable insights for researchers and practitioners, guiding them in selecting appropriate feature selection techniques to enhance predictive modeling in healthcare applications.Abstract
How to Cite
Downloads
Similar Articles
- Arenlila Jamir, Sangeeta Kharde, Anita Dalal, Health-seeking behavior of first-time mothers toward pregnancy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Poojith K. D. P, Somashekhara ., Dasharatha P. Angadi, Assessing the impact of cyclonic storm Tauktae on shoreline change in Mangaluru coast using geospatial technology , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Muzaffar G. Khoshimov, Problems of general and typological theory of composite sentence with a parenthetical clause as an invariant type of syntactic unit , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Suresh Kumar, S.N.Md. Assarudeen, Solving neutrosophic multi-objective linear fractional programming problem using central measures , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Farheen Najma B, Faseeha Begum, Resistance to digital banking by senior citizens in India - A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.