Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.24Keywords:
CatBoost, Dynamic Gradient-Sharing, Ensemble learning, Feature selection, Heart disease, Neural Networks, Recursive Feature Elimination, SHAPDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Heart disease remains one of the leading causes of mortality globally, necessitating accurate and efficient prediction models. This paper presents a novel ensemble model combining CatBoost and neural networks (ECNN) to improve heart disease prediction accuracy. The proposed methodology incorporates two key innovations: the sequential SHAP and RFE hybrid optimization (SSHO) technique for feature selection and the dynamic gradient-sharing mechanism (DGSM) to facilitate efficient interaction between CatBoost and neural networks. SSHO dynamically selects relevant features based on SHAP values, while DGSM shares gradient information to optimize learning. The ECNN model was trained using the personal key indicators of heart disease dataset, addressing class imbalance with SMOTE. The experimental results demonstrate the model’s superior performance with an accuracy of 91%, precision of 94%, and F1-score of 92%. These findings surpass previous studies’ results and highlight the ECNN model’s novelty in improving prediction accuracy and interpretability. The integration of SSHO and DGSM offers a scalable approach to heart disease prediction, making it a valuable contribution to clinical decision support systems.Abstract
How to Cite
Downloads
Similar Articles
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Divya Goyal, Aksh Chahal, Aashi Bhatnagar, Vishakha, Sheetal Malhan, Vishwajeet Trivedi, Comparison of the acute metabolic and cardiovascular effects of electrical stimulation and voluntary exercise , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Sivakumar, S. Vijaya, Eco-epidemiology of prey and competitive predator species in the SEI model , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Gautam Nayak, Parthivkumar Patel, Developing speaking skills through task-based learning in English as a foreign language classroom , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Thiagarajan, S. Prakash Kumar, Performance of public transport appraisal using machine learning , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper