Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.246Keywords:
Machine Learning, Reconfiguration, Computer numerical control (CNC), Gated Graph Neural Network (GGNN), Automat Manufacturing Systems, Dedicated Manufacturing lines.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To deal with the unpredictability of dynamic markets, automated manufacturing systems rely on their capacity to adapt and change. With the need for more personalized and high-quality goods, the complexity of these systems evolves, prompting more agile and adaptable techniques. To enable dynamic as well as on systems reconfiguration aimed at responding swiftly to product changes by providing more efficient services. To increase production in response to market demand and meet the referred requirements, this proposed study employs Machine Learning Techniques for the Reconfiguration of Automated Manufacturing Systems. Gated Graph Neural Network (GGNN) based prediction model is generated using graph instances as input, and the prediction model provides a result for each graph instance, as well as activity level relevance and ratings for the relevant needs such as model accuracy and validation. For better use of the model effectiveness by the proposed methodology for the final model is validated for cost, time, and productivity.Abstract
How to Cite
Downloads
Similar Articles
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper