SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.25Keywords:
Liveness Detection, Convolutional Neural Network, Face recognition.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Face spoofing refers to “tricking” a facial recognition system to gain unauthorized access to a particular system. It is mostly used to steal data and money or spread malware. The malicious impersonation of oneself is a critical component of face spoofing to gain access to a system. It is observed in many identity theft cases, particularly in the financial sector. In 2015, Wen et al. presented experimental results for cutting-edge commercial off-the-shelf face recognition systems. These demonstrated the probability of fake face images being accepted as genuine. The probability could be as high as 70%. Despite this, the vulnerabilities of face recognitionAbstract
systems to attacks were frequently overlooked. The Presentation Attack Detection (PAD) method that determines whether the source of a biometric sample is a live person or a fake representation is known as Liveness Detection. Algorithms are used to accomplish this by analyzing biometric sensor data for the determination of the authenticity of a source.
How to Cite
Downloads
Similar Articles
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajesh Kumar Singh, Abhishek Kumar Mishra, Ramapati Mishra, Hand Gesture Identification for Improving Accuracy Using Convolutional Neural Network(CNN) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Arvind R Yadav, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper