SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.25Keywords:
Liveness Detection, Convolutional Neural Network, Face recognition.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Face spoofing refers to “tricking” a facial recognition system to gain unauthorized access to a particular system. It is mostly used to steal data and money or spread malware. The malicious impersonation of oneself is a critical component of face spoofing to gain access to a system. It is observed in many identity theft cases, particularly in the financial sector. In 2015, Wen et al. presented experimental results for cutting-edge commercial off-the-shelf face recognition systems. These demonstrated the probability of fake face images being accepted as genuine. The probability could be as high as 70%. Despite this, the vulnerabilities of face recognitionAbstract
systems to attacks were frequently overlooked. The Presentation Attack Detection (PAD) method that determines whether the source of a biometric sample is a live person or a fake representation is known as Liveness Detection. Algorithms are used to accomplish this by analyzing biometric sensor data for the determination of the authenticity of a source.
How to Cite
Downloads
Similar Articles
- P. J. Robinson, S. W. A. Prakash, Stochastic artificial neural network for magdm problem solving in intuitionistic fuzzy environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper