Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.246Keywords:
Machine Learning, Reconfiguration, Computer numerical control (CNC), Gated Graph Neural Network (GGNN), Automat Manufacturing Systems, Dedicated Manufacturing lines.Dimensions Badge
Issue
Section
License
Copyright (c) 2022 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To deal with the unpredictability of dynamic markets, automated manufacturing systems rely on their capacity to adapt and change. With the need for more personalized and high-quality goods, the complexity of these systems evolves, prompting more agile and adaptable techniques. To enable dynamic as well as on systems reconfiguration aimed at responding swiftly to product changes by providing more efficient services. To increase production in response to market demand and meet the referred requirements, this proposed study employs Machine Learning Techniques for the Reconfiguration of Automated Manufacturing Systems. Gated Graph Neural Network (GGNN) based prediction model is generated using graph instances as input, and the prediction model provides a result for each graph instance, as well as activity level relevance and ratings for the relevant needs such as model accuracy and validation. For better use of the model effectiveness by the proposed methodology for the final model is validated for cost, time, and productivity.Abstract
How to Cite
Downloads
Similar Articles
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sweta Jain, Jacob Joseph Kalapurackal, Green Innovation, Pressure, Green Training, and Green Manufacturing: Empirical evidence from the Indian apparel export industry , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper