Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.26Keywords:
Convolutional Neural Networks, Deep Learning, Glaucoma Classification, YOLO-V8, Machine Learning, Image Processing, Image LocalizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To propose a new system to identify glaucoma at an early stage with the help of deep learning-based AI method by utilizing Retinal Fundus Images (RFI). The method detects intrinsic key structures in the fundus images to predict retinal nerve layer thickness in order to improve the accuracy of glaucoma detection and classification. To learn complex and hierarchical image representations, the CNN model is used to identify the continuous value of retinal nerve layer thickness from RFI. The Binary Cross Entropy (BCE) loss function is used to perform multi-classification tasks to discover classes such as healthy eye, eye with glaucoma, and glaucoma suspect. In order to identify the local and global features in RFI, the YOLO-V8 object detection method is employed, which also helps to perform image localization, which includes image segmentation, deep optic disc analysis, and the extraction of ROIs. The main focus is given, especially for RNL thickness around OD regions and CDR measurement to perform glaucoma identification tasks. The PAPILA dataset is utilized with the ophthalmology records from 244 patients and includes 488 digital retinal fundus images, covering both left and right eyes for both male and female categories. The CNN model is trained on the PAPILA dataset with labeled RNL thickness values. The performance of CNN-BCE with YOLO-V8 is evaluated using MATLAB and compared against the prevailing approaches such as SVM, ADABOOST, and CNN-Softmax classifiers. The new model outperforms the existing methods with proven results of 98.88% accuracy rate, 0.9 dice-score, 97.74% and 98.03% sensitivity & specificity, 98.6% and 98.78% precision & recall, 98.06% f-score, and 0.92 true positive rates and 0.10 false positive rates under AUC-ROC. This clearly shows that the newly proposed CNN-BCE with YOLO-V8 detects and classifies glaucoma, which helps ophthalmologists perform potential screening and predict better treatments. Abstract
How to Cite
Downloads
Similar Articles
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.