Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.26Keywords:
Convolutional Neural Networks, Deep Learning, Glaucoma Classification, YOLO-V8, Machine Learning, Image Processing, Image LocalizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To propose a new system to identify glaucoma at an early stage with the help of deep learning-based AI method by utilizing Retinal Fundus Images (RFI). The method detects intrinsic key structures in the fundus images to predict retinal nerve layer thickness in order to improve the accuracy of glaucoma detection and classification. To learn complex and hierarchical image representations, the CNN model is used to identify the continuous value of retinal nerve layer thickness from RFI. The Binary Cross Entropy (BCE) loss function is used to perform multi-classification tasks to discover classes such as healthy eye, eye with glaucoma, and glaucoma suspect. In order to identify the local and global features in RFI, the YOLO-V8 object detection method is employed, which also helps to perform image localization, which includes image segmentation, deep optic disc analysis, and the extraction of ROIs. The main focus is given, especially for RNL thickness around OD regions and CDR measurement to perform glaucoma identification tasks. The PAPILA dataset is utilized with the ophthalmology records from 244 patients and includes 488 digital retinal fundus images, covering both left and right eyes for both male and female categories. The CNN model is trained on the PAPILA dataset with labeled RNL thickness values. The performance of CNN-BCE with YOLO-V8 is evaluated using MATLAB and compared against the prevailing approaches such as SVM, ADABOOST, and CNN-Softmax classifiers. The new model outperforms the existing methods with proven results of 98.88% accuracy rate, 0.9 dice-score, 97.74% and 98.03% sensitivity & specificity, 98.6% and 98.78% precision & recall, 98.06% f-score, and 0.92 true positive rates and 0.10 false positive rates under AUC-ROC. This clearly shows that the newly proposed CNN-BCE with YOLO-V8 detects and classifies glaucoma, which helps ophthalmologists perform potential screening and predict better treatments. Abstract
How to Cite
Downloads
Similar Articles
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ramesh Babu Durai C, D. Madhivadhani, A. Sumathi, Lily Saron Grace, Graph neural networks for modeling ecological networks and food webs , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

