Application of support vector classifier for mango leaf disease classification
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.16Keywords:
Mango Leaf Disease, Support Vector Machine, Feature Extraction, Machine Learning, Support Vector Classifier.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In India, Mango is the fruit of high economic and ecological importance as it exports in large quantities. 1000 varieties of mangoes are cultivated and mostly supported commercially. Among all the Indian fruits, mangoes are highly demand. In majority of the Indian region, mango crops are suffering from several diseases that reduce both the production and the quality and parallel reduces its value on the international market. Mangoes are highly affected by number of diseases, which hamper its appearance, taste and has huge impact on the economy the Indian commercial growth rate has not raised. Manually identifying those disease is a complex task and time consuming, since lack of knowledge, poverty, infrastructure and the facilities the identification of the disease in earlier stages are not done by the farmers. In recent years, the plant pathologists apply different techniques to identify the diseases but then again these techniques are time consuming and relatively expensive for mango growers and the solutions proposed are often not very accurate and sometimes biased. The disease has to diagnosed in order to provide solution to the farmers to increase the productivity with high quality. Currently, researchers have proposed several solutions to diagnosis of mango diseases automatically to gain high returns. The use of machine learning algorithms to identify diseases of plants from leaf photos is a very exciting field for advancement and research has carried in the proposed system using Support vector machine. Using non-linear SVC, achieved the accuracy of 88% for the dataset.Abstract
How to Cite
Downloads
Similar Articles
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.