The effectiveness of machine learning and image processing in detecting plant leaf disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.02Keywords:
Data Augmentation, Feature extraction, Image acquisition, Plant leaf identification, Segmentation.Dimensions Badge
Issue
Section
In our daily lives, the agricultural sector is crucial. Therefore, it is crucial to be clear about the steps taken to identify any diseases on agricultural plants’ leaves. Plant leaf disease is a significant issue or contributor to crop losses in an agricultural context. Some farmers are able to know every disease name and how to prevent them as it becomes increasingly crucial to recognize the sickness. Different plant leaf diseases appear during various seasons. This problem can be resolved using a deep learning-based approach by identifying the affected regions in plant leaf images, enabling farmers to better comprehend the disease. The primary goal of this research is to survey several image-processing methods for detecting plant diseases and to compare them. India is an agricultural nation, and the majority of its people depend on agriculture for a living. Focusing on farming with modern technology is essential to ensuring their comfort and ease of living. Crop productivity may be greatly increased by introducing new technologies. An autonomous plant disease detection method using image processing and a neural network methodology can be utilized to solve issues with plant and agricultural diseases. Plants can contract a wide range of illnesses. Different patterns are needed to detect various disorders.Abstract
How to Cite
Downloads
Similar Articles
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sabeerath K, Manikandasaran S. Sundaram, BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.