The effectiveness of machine learning and image processing in detecting plant leaf disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.02Keywords:
Data Augmentation, Feature extraction, Image acquisition, Plant leaf identification, Segmentation.Dimensions Badge
Issue
Section
In our daily lives, the agricultural sector is crucial. Therefore, it is crucial to be clear about the steps taken to identify any diseases on agricultural plants’ leaves. Plant leaf disease is a significant issue or contributor to crop losses in an agricultural context. Some farmers are able to know every disease name and how to prevent them as it becomes increasingly crucial to recognize the sickness. Different plant leaf diseases appear during various seasons. This problem can be resolved using a deep learning-based approach by identifying the affected regions in plant leaf images, enabling farmers to better comprehend the disease. The primary goal of this research is to survey several image-processing methods for detecting plant diseases and to compare them. India is an agricultural nation, and the majority of its people depend on agriculture for a living. Focusing on farming with modern technology is essential to ensuring their comfort and ease of living. Crop productivity may be greatly increased by introducing new technologies. An autonomous plant disease detection method using image processing and a neural network methodology can be utilized to solve issues with plant and agricultural diseases. Plants can contract a wide range of illnesses. Different patterns are needed to detect various disorders.Abstract
How to Cite
Downloads
Similar Articles
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, INVOLVEMENT OF PLANT MICRORNAS IN ABIOTIC STRESS RESPONSES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S K Bairagi, Ram Chandra, R P Singh, Effect of Different Phosphorus and Potassium Levels on a Seed Crop of French Bean (Phaseolus vulgaris L.) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.