Data analysis and machine learning-based modeling for real-time production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.11Keywords:
Data analysis, Machine learning, Fault detectionDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article focuses on data analysis and real-time data modeling using linear regression and decision tree algorithms that might make revolutionary predictions on production data. Factual time data points, including temperature, load, and warning on all the presented axis, are the dependent parameters which be contingent on the changes in the autonomous paraments like load. Monitoring and innovative prediction are very much needed in industry as there are recurrent load changes that would create a data drift and, in terms of maintenance, that could impact the production side, the need for continuous monitoring and control. Machine learning-based approaches would work better on these real-time production datasetsAbstract
How to Cite
Downloads
Similar Articles
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper