The effectiveness of machine learning and image processing in detecting plant leaf disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.02Keywords:
Data Augmentation, Feature extraction, Image acquisition, Plant leaf identification, Segmentation.Dimensions Badge
Issue
Section
In our daily lives, the agricultural sector is crucial. Therefore, it is crucial to be clear about the steps taken to identify any diseases on agricultural plants’ leaves. Plant leaf disease is a significant issue or contributor to crop losses in an agricultural context. Some farmers are able to know every disease name and how to prevent them as it becomes increasingly crucial to recognize the sickness. Different plant leaf diseases appear during various seasons. This problem can be resolved using a deep learning-based approach by identifying the affected regions in plant leaf images, enabling farmers to better comprehend the disease. The primary goal of this research is to survey several image-processing methods for detecting plant diseases and to compare them. India is an agricultural nation, and the majority of its people depend on agriculture for a living. Focusing on farming with modern technology is essential to ensuring their comfort and ease of living. Crop productivity may be greatly increased by introducing new technologies. An autonomous plant disease detection method using image processing and a neural network methodology can be utilized to solve issues with plant and agricultural diseases. Plants can contract a wide range of illnesses. Different patterns are needed to detect various disorders.Abstract
How to Cite
Downloads
Similar Articles
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. Kalaiselvi, M. Kasthuri, Tuning VGG19 hyperparameters for improved pneumonia classification , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Gomathi Ramalingam, Logeswari S, M. D. Kumar, Manjula Prabakaran, Neerav Nishant, Syed A. Ahmed, Machine learning classifiers to predict the quality of semantic web queries , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.