The effectiveness of machine learning and image processing in detecting plant leaf disease
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.02Keywords:
Data Augmentation, Feature extraction, Image acquisition, Plant leaf identification, Segmentation.Dimensions Badge
Issue
Section
In our daily lives, the agricultural sector is crucial. Therefore, it is crucial to be clear about the steps taken to identify any diseases on agricultural plants’ leaves. Plant leaf disease is a significant issue or contributor to crop losses in an agricultural context. Some farmers are able to know every disease name and how to prevent them as it becomes increasingly crucial to recognize the sickness. Different plant leaf diseases appear during various seasons. This problem can be resolved using a deep learning-based approach by identifying the affected regions in plant leaf images, enabling farmers to better comprehend the disease. The primary goal of this research is to survey several image-processing methods for detecting plant diseases and to compare them. India is an agricultural nation, and the majority of its people depend on agriculture for a living. Focusing on farming with modern technology is essential to ensuring their comfort and ease of living. Crop productivity may be greatly increased by introducing new technologies. An autonomous plant disease detection method using image processing and a neural network methodology can be utilized to solve issues with plant and agricultural diseases. Plants can contract a wide range of illnesses. Different patterns are needed to detect various disorders.Abstract
How to Cite
Downloads
Similar Articles
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shefali Bahadur, Rohit Kushwaha, M. Venkatesan, Ramya Singh, Manish Mishra, Strategic alignment in multispecialty hospitals: Implementing a balanced scorecard approach for optimal performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Vinay Viratia, Sandeep Kumar, Shama Praveen, Tarang Shrivastava, Priyanka, Enhancing Trunk Control Balance in Children with Spastic Diplegic Cerebral Palsy: Comparative Effectiveness of the Vestibular Stimulation Technique and Standard Treatment , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- KAPIL KHULBE, SURESH C. SATI, ANTIBACTERIAL POTENTIAL EVALUATION OF RHIZOME EXTRACTS OF BERGINIA CILIATA (HAW.) STERNB , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Firdaus Benazir, Reena Mohanka, S Rehan Ahmad, Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.