Application of support vector classifier for mango leaf disease classification
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.16Keywords:
Mango Leaf Disease, Support Vector Machine, Feature Extraction, Machine Learning, Support Vector Classifier.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In India, Mango is the fruit of high economic and ecological importance as it exports in large quantities. 1000 varieties of mangoes are cultivated and mostly supported commercially. Among all the Indian fruits, mangoes are highly demand. In majority of the Indian region, mango crops are suffering from several diseases that reduce both the production and the quality and parallel reduces its value on the international market. Mangoes are highly affected by number of diseases, which hamper its appearance, taste and has huge impact on the economy the Indian commercial growth rate has not raised. Manually identifying those disease is a complex task and time consuming, since lack of knowledge, poverty, infrastructure and the facilities the identification of the disease in earlier stages are not done by the farmers. In recent years, the plant pathologists apply different techniques to identify the diseases but then again these techniques are time consuming and relatively expensive for mango growers and the solutions proposed are often not very accurate and sometimes biased. The disease has to diagnosed in order to provide solution to the farmers to increase the productivity with high quality. Currently, researchers have proposed several solutions to diagnosis of mango diseases automatically to gain high returns. The use of machine learning algorithms to identify diseases of plants from leaf photos is a very exciting field for advancement and research has carried in the proposed system using Support vector machine. Using non-linear SVC, achieved the accuracy of 88% for the dataset.Abstract
How to Cite
Downloads
Similar Articles
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Aasha, R. Sugumar, Lightweight Feature Selection Method using Quantum Statistical Ranking and Hybrid Beetle-Bat Optimization for Smart Farming , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

