Graph neural networks for modeling ecological networks and food webs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.15Keywords:
Ecological networks, Graph Neural Networks (GNNs), Population dynamics, Trophic interactions, Spatial patterns, Biodiversity conservationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper investigates the application of Graph Neural Networks (GNNs) for modeling ecological networks and food webs. Using Python programming with libraries such as NumPy, Matplotlib, and NetworkX, random data generation is performed to simulate population sizes of different species within ecological networks. Various types of visualizations, including bar charts, line charts, and pie charts, are created to analyze population sizes, trends, and distribution of species. Additionally, NetworkX is employed to create graphical representations of ecological networks, including directed, spring layout, and circular layout graphs. These graphs illustrate trophic interactions, energy flow dynamics, and spatial organization of species categories within ecological networks. The study's methodology integrates data generation techniques with visualization tools to analyze and interpret ecological networks and food webs. The findings contribute to understanding ecosystem dynamics, trophic interactions, and biodiversity patterns, providing insights for ecological modeling and conservation efforts. Overall, this research explores the potential of GNNs in modeling and understanding complex ecological systems, offering valuable implications for ecosystem management and biodiversity conservation.Abstract
How to Cite
Downloads
Similar Articles
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Parwez Ahmad, Md Jamaluddin, Estimation of Some Heavy Metal Estimation at Sites of Saryug River as Lateral Tributary of the Ganga in Northern Bihar , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Roopesh K R, Jyothi Y, Manisha Bihani, Chandini C H, Nishanth D R, Maheshkumar Hondale, Sairashmi Samanta, Karthik G, Anu M, Neuroprotective effect of alcoholic extract of Selaginella bryopteris leaves in experimental models of epilepsy , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

