Graph neural networks for modeling ecological networks and food webs
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.15Keywords:
Ecological networks, Graph Neural Networks (GNNs), Population dynamics, Trophic interactions, Spatial patterns, Biodiversity conservationDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper investigates the application of Graph Neural Networks (GNNs) for modeling ecological networks and food webs. Using Python programming with libraries such as NumPy, Matplotlib, and NetworkX, random data generation is performed to simulate population sizes of different species within ecological networks. Various types of visualizations, including bar charts, line charts, and pie charts, are created to analyze population sizes, trends, and distribution of species. Additionally, NetworkX is employed to create graphical representations of ecological networks, including directed, spring layout, and circular layout graphs. These graphs illustrate trophic interactions, energy flow dynamics, and spatial organization of species categories within ecological networks. The study's methodology integrates data generation techniques with visualization tools to analyze and interpret ecological networks and food webs. The findings contribute to understanding ecosystem dynamics, trophic interactions, and biodiversity patterns, providing insights for ecological modeling and conservation efforts. Overall, this research explores the potential of GNNs in modeling and understanding complex ecological systems, offering valuable implications for ecosystem management and biodiversity conservation.Abstract
How to Cite
Downloads
Similar Articles
- Ravindra Kumar Verma, An Evaluation of Second Viscosity Coefficient of Liquid He3 Phase-B for Balian and Wethamer State as Function of Reduced Temperature , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Raju Prasad Singh, R.K. Verma, Study of Josephson Effect Between Bose Condensate , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Harsh Mineshbhai Shah, A literature-based analysis of studies in urban landscape concept , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Ishwar Dan, Viksit Bharat @2047: A vision for India’s sustainable development , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Rajesh Rayal, Alveena Saher , Pankaj Bahuguna, Shailza Negi, Study on Breeding Capacity of Snow Trout Schizothorax richardsonii (Gray) From River Yamuna, Uttarakhand, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Pratibha Baluni, Pankaj Bahuguna, Rajani ., Rajesh Rayal, Nikhil Singh Kahera, Periphyton Community Structure of the Spring-fed Foot-hill Stream Tamsa Nadi from Doon Valley, Uttarakhand, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Pankaj Bahuguna, Sapna ., Rajesh Rayal, Neelam Shah, N.C. Khanduri, Sexual Maturity of an Ornamental Himalayan Foot-hill Region Fish Barilius barna as Determined by Dobriyal Index and Gonado-somatic Index , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Ruchira P Dudhrejiya, A critical analysis of power dynamics in Vijay Tendulkar's theatrical tapestry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 > >>
You may also start an advanced similarity search for this article.

