Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- Mayuri Gupta, Deesha Khaire, Financial devolution in a multilevel system: An evaluation of the working of state finance commissions in India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Bhoomika Singh, Defluoridation of Drinking Water in India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- SUVRA MANDAL, PRIYABRATA DASC, ASHES DAS, DHIRENDRA NATH MONDAL, ANINDITA GHOSH, DEBARATI MUKHERJEE, RAGHWENDRA MISHRA, ATANU BHATACHARYYA, MANOJ KAR, EVALUATION OF ANTIOXIDANT ACTIVITY OF THE POLYOXYGENATED XANTHONES FROM SWERTIA CHIRATA BUCH., HAM , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Pavithra M, Dr. R. Neelaveni, Muthuraman K. R , Kamalesh G, Design of an interactive smart band for intellectually disabled person , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Kavita Gahtori, Chanchal Aggarwal, Manjusha Tyagi, Atal Bihari Bajpai, Naina Srivastava, Shalini Singh, Shelly Singh, Naveen Gaurav, Review on Murraya koenigii: Dietary Supplements and Highly Prosperous Plants of Pharmacological Value , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Ravindra Kumar Verma, An Evaluation of Second Viscosity Coefficient of Liquid He3 Phase-B for Balian and Wethamer State as Function of Reduced Temperature , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sadanand Maurya, Manikant Tripathi, Karunesh K. Tiwari, Awadhesh K. Shukla, Isolation and molecular characterization of microbial isolates from Saryu river water , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. A. Askerov, The role of improving the business environment in agriculture in ensuring the country’s food security , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 43 44 45 46 47 48 49 50 51 52 > >>
You may also start an advanced similarity search for this article.