Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- Shapali Devi, Sadguru Prakash, Ravindra Pratap Singh, Rahul Singh, Polylactic Acid: A Bio-Based Polymer as an Emerging Substitute for Plastics , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Santosh Kumar Sahu, B. R. Senthil kumar, Y. Aboobucker parvez, Ashish Verma, Assessment of noise levels by using noise prediction modeling , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Parul Yadav, Priyanka Suryavanshi, Storage study on compositional analysis of quinoa and ragi based snacks , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Worku Masho, Habtamu Arega, Elias Bayou, Regasa Begna, The Effect of estrus synchronization with prostaglandin (PGF2α) hormone on reproductive performances of Bonga sheep ewes flushed with different local forages in Kaffa zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kamble Rajratna M., Kulkarni Pramod R., Existence and uniqueness of solutions for exponential fractional differential equations , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Archana Bansal, On the Biology of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Poojith K. D. P, Somashekhara ., Dasharatha P. Angadi, Assessing the impact of cyclonic storm Tauktae on shoreline change in Mangaluru coast using geospatial technology , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kumari Sammy, Sumita Singh, Coefficient of absorption cross-section of RN black holes , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 38 39 40 41 42 43 44 45 46 47 > >>
You may also start an advanced similarity search for this article.