Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- U.S.P. Sinha, R. Chakravorty, STUDIES ON THE PHOSPHATIC AND POTASSIC FERTILIZERS REQUIREMENT OF MULBERRY (Morus alba L.) BASED ON SOIL TEST VALUES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Ashwani Pandey, Sanjay Madan, Kumari Sandhiya, Ruchi Sharma, Akansha Raturi, Ashmita Bhatt, Naveen Gaurav, Comparison of Antioxidant, Phytochemical Profiling of Bacopa monnieri (Brahmi) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- JAY SHANKAR SINGH, D.P. SINGH, R.K GUPTA, GENETICALLY MODIFIED PLANTS : BENEFITS AND ENVIRONMENTAL PROBLEMS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Dadhaniya Deepa Karshanbhai, Nilofar Bhatti, Bioremediation of Textile Dyes Using Native Microorganisms: Sustainable Microbiological Approaches , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Chandra Bhushan Tiwary, Ashok Kumar Singh, WATER QUALITY AND LIFE-HISTORY PARAMETERS OF DAPHNIA CARINATA (DAPHNIDAE : CLADOCERA) UNDER LABORATORY CONDITIONS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Manju Yadav, B.P. Singh, A Study of Environmental Awareness and Academic Achievement of Under-Graduate Tribal Students in Satna District (M.P.) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P.S. Negi, Ranjit Singh, Zakwan Ahmed, IN VITRO PROPAGATION OF POTENTILLA FULGENS HOOK (BAJRADANTI) – A HIGH VALUE MEDICINAL HERB FOR COMMERCIAL CULTIVATION , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Sampa Mondal, Baibaswata Bhattacharjee, Amelioration of the UV-blocking property of ZnO nanoparticles as an active sunscreen ingredient , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.