Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ankeeta Vispute, Muskaan Vasaya, Sagar Deshpande , Impact of rheumatoid arthrtis on functional limitations of wrist and hand , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Siddharth P. Singh, Amar B. Verma, Ankur Srivastava, Kamlesh K. Chaurasiya, Anil Kumar, Prashant K. Singh, Sindhu Singh, Design Design, structural, and electrical conduction behavior of Zr-modified BaTiO3-BiFeO3 perovskite ceramics , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A.K. SHARMA, R.B. SHARMA, ALGAL FLORA OF ALCOHAL DISTILLERY EFFLUENT , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Saroj Bala, Rajiv Ranjan Dwivedi, The Problematics of Parenthood in the Shiva Trilogy by Amish , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Nitu Y. Wadkar, Sneha A. Irole, Sayali S. Kondar, Kalyani Joshi, The idea of mahavisha-upvisha shodhan in agadtantra: The ancient Indian knowledge system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sukhada S. Prabhu, Anuprita M. Thakur, Evaluating the Responsiveness of Hindi version of International Physical Activity Questionnaire-Long Form (IPAQ-LF) in healthy adults. , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Siddiqui M. Asif, Amir Asad, Mohommad Arif, Veena Pandey, SCREENING OF PECTINASE PRODUCING THERMOPHILIC MUCOR SP. ISOLATED FROM DECOMPOSTING FRUITS AND VEGETABLES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Birhanu T Sisay, Jadu K. Agerchu, Gizachew W. Nuraga, Effects of bended NPSB fertilizer rates and varieties on growth and yield of garlic (Allium sativum L.) in Gummer district, Central Ethiopia , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sampa Mondal, Nilanjana Chatterjee, Baibaswata Bhattacharjee, Positive impact of using α-Fe2O3 nanoparticles as dietary supplements on some hematological parameters of an economically important minor carp Labeo bata (Hamilton, 1822) , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 46 47 48 49 50 51 52 53 54 55 > >>
You may also start an advanced similarity search for this article.