Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.48Keywords:
Python-based social science applications, High-performance computing systems, task and data parallelism, Optimization methodology, Machine learning model evaluationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research addresses the pressing need to optimize Python-based social science applications for high-performance computing (HPC)Abstract
systems, emphasizing the combined use of task and data parallelism techniques. The paper delves into a substantial body of research,
recognizing Python’s interpreted nature as a challenge for efficient social science data processing. The paper introduces a Python
program that exemplifies the proposed methodology. This program uses task parallelism with multi-processing and data parallelism
with dask to optimize data processing workflows. It showcases how researchers can effectively manage large datasets and intricate
computations on HPC systems. The research offers a comprehensive framework for optimizing Python-based social science applications
on HPC systems. It addresses the challenges of Python’s performance limitations, data-intensive processing, and memory efficiency.
Incorporating insights from a rich literature survey, it equips researchers with valuable tools and strategies for enhancing the efficiency
of their social science applications in HPC environments.
How to Cite
Downloads
Similar Articles
- Prempal ., R.B. Sharma, A Severe Fruit Rot In Market , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Brijesh Pathak, Estimation of Polonium Contents in Soil and Plants , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Deepa H. Dwivedi, Rubee Lata, R. B. Ram, EFFECT OF BIO-FERTILIZER AND ORGANIC MANURES ON YIELD AND QUALITY OF GUAVA CV. RED FLESHED , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Sangeeta Modi, P Usha, Fault analysis in hybrid microgrid for developing a suitable protection scheme , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- J. B. BHEDA, Comparative study of classical oratory traditions in East and West , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P.L. Parmar, P.M George, Effect of process parameters on concentricity in CNC turning operation using design of experiment , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raghvendra, Tulika Saxena, Saurabh Verma, Rashi Saxena, Smita Dron, Shilpi Singh, Combination of financial literacy, strategic marketing and effective human resource for sustainable household wealth development , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. K. Chaubey, Vidhi Tyagi, Tanu Vatsa, Chhavi Kaushik, EVALUATION OF VIRULENCE OF ENTOMOPATHOGENIC NEMATODE ISOLATES AGAINST HELICOVERPA ARMIGERA AND SPODEPTERA LITURA , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Nilam Priyadarshini, Prashant Kumar, ECOLOGICAL STATUS AND PERFORMANCE THROUGH POND ECOSYSTEM WITH PERSPECTIVES FOR FUTURE CONSERVATION , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 49 50 51 52 53 54 55 56 57 58 > >>
You may also start an advanced similarity search for this article.