A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.11Keywords:
Artificial intelligence, fractional/quadratic transportation problem, fuzzy environment, multi choice parametersDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Modern technology is led by artificial intelligence (AI), which is transforming many aspects of our daily life. Urban regions continue to struggle with traffic congestion, which lengthens travel times, increases fuel consumption, and pollutes the environment. To reduce congestion and preserve a smooth traffic flow, AI systems can dynamically assign lanes, synchronize traffic lights, and optimize signal timings. The unpredictability of transportation conditions leads to degradation or damage to the products. In addition, there are elements like growing fuel costs and the desire to cut carbon emissions that make it difficult for businesses to move goods. In this paper a new model is proposed using AI with uncertain cost and multi-choice supply and demand parameters (BFQGMCTP) to develop a Bilevel Fractional/Quadratic Green Transportation Problem. The objective is to concurrently reduce transportation costs, transit-related deterioration costs, and carbon emission costs. Two distinct approaches namely, intuitionistic fuzzy programming and goal programming are used to tackle the current problem, and a comparative study of the two solutions is presented. The computations show that the implementation of AI technology reduced carbon emission, fuel consumption, and travel time by 18%, 15%, and 30% respectively.Abstract
How to Cite
Downloads
Similar Articles
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- D. Selvaraj, A study on sustainable technology development of fintech 5.0 in Indian industries , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Shahala Sheikh, Lalsingh Khalsa, Nitin Chandel, Vinod Varghese, Hygrothermoelastic large deflection behaviour in a thin circular plate with non-Fourier and non-Fick law , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Indrajeet Mishra, Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

