A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.11Keywords:
Artificial intelligence, fractional/quadratic transportation problem, fuzzy environment, multi choice parametersDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Modern technology is led by artificial intelligence (AI), which is transforming many aspects of our daily life. Urban regions continue to struggle with traffic congestion, which lengthens travel times, increases fuel consumption, and pollutes the environment. To reduce congestion and preserve a smooth traffic flow, AI systems can dynamically assign lanes, synchronize traffic lights, and optimize signal timings. The unpredictability of transportation conditions leads to degradation or damage to the products. In addition, there are elements like growing fuel costs and the desire to cut carbon emissions that make it difficult for businesses to move goods. In this paper a new model is proposed using AI with uncertain cost and multi-choice supply and demand parameters (BFQGMCTP) to develop a Bilevel Fractional/Quadratic Green Transportation Problem. The objective is to concurrently reduce transportation costs, transit-related deterioration costs, and carbon emission costs. Two distinct approaches namely, intuitionistic fuzzy programming and goal programming are used to tackle the current problem, and a comparative study of the two solutions is presented. The computations show that the implementation of AI technology reduced carbon emission, fuel consumption, and travel time by 18%, 15%, and 30% respectively.Abstract
How to Cite
Downloads
Similar Articles
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sharanya Unnikrishnan, Eldhose Thomas, Arunima Dey, AI-Powered NLP in Vernacular Public Relations: Opportunities, Challenges, and Ethical Implications for India’s Multilingual Landscape , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- V Anitha, Seema Sharma, R. Jayavadivel, Akundi Sai Hanuman, B Gayathri, R. Rajagopal, A network for collaborative detection of intrusions in smart cities using blockchain technology , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- D. Selvaraj, A study on sustainable technology development of fintech 5.0 in Indian industries , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Naresh Vyas, Dushyant Dave, Impact of Textile Effluents on Water in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amanda Quist Okronipa, Lucy Ewuresi Eghan, A theoretical investigation of students’ adoption of artificial intelligence chatbots using social cognitive theory and uses and gratification theory , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

