A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.11Keywords:
Artificial intelligence, fractional/quadratic transportation problem, fuzzy environment, multi choice parametersDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Modern technology is led by artificial intelligence (AI), which is transforming many aspects of our daily life. Urban regions continue to struggle with traffic congestion, which lengthens travel times, increases fuel consumption, and pollutes the environment. To reduce congestion and preserve a smooth traffic flow, AI systems can dynamically assign lanes, synchronize traffic lights, and optimize signal timings. The unpredictability of transportation conditions leads to degradation or damage to the products. In addition, there are elements like growing fuel costs and the desire to cut carbon emissions that make it difficult for businesses to move goods. In this paper a new model is proposed using AI with uncertain cost and multi-choice supply and demand parameters (BFQGMCTP) to develop a Bilevel Fractional/Quadratic Green Transportation Problem. The objective is to concurrently reduce transportation costs, transit-related deterioration costs, and carbon emission costs. Two distinct approaches namely, intuitionistic fuzzy programming and goal programming are used to tackle the current problem, and a comparative study of the two solutions is presented. The computations show that the implementation of AI technology reduced carbon emission, fuel consumption, and travel time by 18%, 15%, and 30% respectively.Abstract
How to Cite
Downloads
Similar Articles
- A. Pappa, P. Muruganantham, A. Nagoor Gani, Properties on semi-ring of fuzzy matrices with compatible norm , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Borde, Dattatraya Pandurang Rane, Pratap Vasantrao Pawar, Role of artificial intelligence in digital marketing in enhancing customer engagement , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Hemang Shah, Archana Gadekar, Artificial intelligence and intellectual property rights with special reference to patent and copyright , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

