A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.11Keywords:
Artificial intelligence, fractional/quadratic transportation problem, fuzzy environment, multi choice parametersDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Modern technology is led by artificial intelligence (AI), which is transforming many aspects of our daily life. Urban regions continue to struggle with traffic congestion, which lengthens travel times, increases fuel consumption, and pollutes the environment. To reduce congestion and preserve a smooth traffic flow, AI systems can dynamically assign lanes, synchronize traffic lights, and optimize signal timings. The unpredictability of transportation conditions leads to degradation or damage to the products. In addition, there are elements like growing fuel costs and the desire to cut carbon emissions that make it difficult for businesses to move goods. In this paper a new model is proposed using AI with uncertain cost and multi-choice supply and demand parameters (BFQGMCTP) to develop a Bilevel Fractional/Quadratic Green Transportation Problem. The objective is to concurrently reduce transportation costs, transit-related deterioration costs, and carbon emission costs. Two distinct approaches namely, intuitionistic fuzzy programming and goal programming are used to tackle the current problem, and a comparative study of the two solutions is presented. The computations show that the implementation of AI technology reduced carbon emission, fuel consumption, and travel time by 18%, 15%, and 30% respectively.Abstract
How to Cite
Downloads
Similar Articles
- Alka Ranjan, Evaluating mental well-being and environmental sustainability in Indian stories , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Anjum Parvez, Sandhya Verma, Rajesh Bahuguna, Scientific Methods in Protection of Wildlife: A Need of Time , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- KIRAN DIMRI, N.K. SHARMA, SEED GERMINATION OF ANACYCLUS PYRETHRUMD.C. IN EXPERIMENTAL FIELD , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Monalisha Paul, Chaitali Kundu, Rudranil Bhowmik, Sanmoy Karmakar, Sandip K. Sinha, Nilanjana Chatterjee, The potential impression of fructo-oligosaccharides and zinc oxide nano composite against nicotine influenced cardiovascular changes , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Balasaheb Waphare, Rahilanaz Shaikh, Nitin Rane, A pair of fractional power of generalized hankel-clifford type transformations and their characteristics , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Brij M. Sharma, Parul Singhal, Neeraj Uniyal, Ram T. Mourya, Jai Sharma, Community based seasonally water quality testing of tributaries of Dehradun , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Seema Yadav, Problems and Perspectives in Sustainable Environment in the World: A Legal Study , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Multi-objective Solid Green Trans-shipment Problem for Cold Chain Logistics under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

