Attention-Enhanced Multi-Modal Machine Learning for Cardiovascular Disease Diagnosis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2026.17.1.04Keywords:
Cardiovascular disease, multi-modal data, hybrid feature fusion, dynamic attention mechanism, machine learning, convolutional neural networkDimensions Badge
Issue
Section
License
Copyright (c) 2026 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular diseases (CVDs) continue to be a major contributor to global mortality, emphasizing the pressing need for precise and early diagnostic methods. Machine learning presents promising opportunities; however, existing approaches still struggle with challenges such as multi-modal data integration, feature heterogeneity, and class imbalance. This study aims to build a scalable, interpretable, and high-performing machine learning framework for CVD classification by integrating clinical, demographic, and imaging information. The proposed approach utilizes hybrid feature fusion by combining early and late fusion strategies, incorporates a dynamic attention mechanism to emphasize relevant features, and applies SHAP-based interpretability for transparent reasoning. Its lightweight design and use of transfer learning enhance computational efficiency and adaptability to small datasets. Experiments on a multi-modal dataset achieved superior results with 94.8% accuracy, 92.3% sensitivity, and 96.1% specificity compared to baseline models. SHAP-based analysis further identified key feature contributions, enhancing model transparency. Overall, the framework provides a robust and efficient solution for CVD detection with potential for clinical implementation, though further testing on diverse datasets is advised to strengthen generalizability and clinical relevance.Abstract
How to Cite
Downloads
Similar Articles
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

