Attention-Enhanced Multi-Modal Machine Learning for Cardiovascular Disease Diagnosis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2026.17.1.04Keywords:
Cardiovascular disease, multi-modal data, hybrid feature fusion, dynamic attention mechanism, machine learning, convolutional neural networkDimensions Badge
Issue
Section
License
Copyright (c) 2026 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cardiovascular diseases (CVDs) continue to be a major contributor to global mortality, emphasizing the pressing need for precise and early diagnostic methods. Machine learning presents promising opportunities; however, existing approaches still struggle with challenges such as multi-modal data integration, feature heterogeneity, and class imbalance. This study aims to build a scalable, interpretable, and high-performing machine learning framework for CVD classification by integrating clinical, demographic, and imaging information. The proposed approach utilizes hybrid feature fusion by combining early and late fusion strategies, incorporates a dynamic attention mechanism to emphasize relevant features, and applies SHAP-based interpretability for transparent reasoning. Its lightweight design and use of transfer learning enhance computational efficiency and adaptability to small datasets. Experiments on a multi-modal dataset achieved superior results with 94.8% accuracy, 92.3% sensitivity, and 96.1% specificity compared to baseline models. SHAP-based analysis further identified key feature contributions, enhancing model transparency. Overall, the framework provides a robust and efficient solution for CVD detection with potential for clinical implementation, though further testing on diverse datasets is advised to strengthen generalizability and clinical relevance.Abstract
How to Cite
Downloads
Similar Articles
- K. Arunkumar, K. R. Shanthy, S. Lakshmisridevi, K. Thilagam, FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Saba Naaz, K.B. Shiva Kumar, Integrated deep learning classification of Mudras of Bharatanatyam: A case of hand gesture recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Subna MP, Kamalraj N, Human Activity Recognition through Skeleton-Based Motion Analysis Using YOLOv8 and Graph Convolutional Networks , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rashmika Vaghela, Dileep Labana, Kirit Modi, Efficient I3D-VGG19-based architecture for human activity recognition , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

