Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.04Keywords:
Attention mechanism, Deep learning, Mask-RCNN, Plant-village dataset, Smart agriculture, U-Net model.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Early and accurate identification of pests, diseases, and weeds in modern agriculture is crucial for sustainable crop management and yield optimization to increase productivity. This research proposes a hybrid deep segmentation framework that integrates Dual Attention UNet and Mask-RCNN methods to enhance the precision and reliability of plant disease detection under diverse environmental conditions. The core objective is to improve segmentation accuracy and object localization, particularly in complex field imagery with overlapping foliage, variable lighting, and background noise. The proposed architecture uses the Plant-Village dataset, which includes a diverse collection of annotated crop images representing multiple classes of pests, diseases, and weed species. The Dual Attention UNet emphasizes salient spatial and channel-wise features, enabling refined pixel-level segmentation of affected regions. This is followed by a Mask-RCNN module that performs instance-aware segmentation and bounding box localization, facilitating detailed identification of individual anomalies even in cluttered scenes. The framework is further enhanced through data augmentation and transfer learning strategies to support generalization across varying crop types. Experimental evaluation reveals that the proposed deep learning-based model achieves a Detection Accuracy (DA) of 96.5%, an F1-Score of 95.2%, AUC-PR of 97.4%, Sensitivity of 96.5%, Scalability of 96.2% and a Processing Time (PT) of 12 seconds per batch, demonstrating both precision and efficiency. Moreover, the architecture shows a Scalability of 96.8%, ensuring robustness in large-scale deployments. The comprehensive results are compared with baseline models such as CNN, Faster R-CNN, and CBAM. The hybrid integration of instance-aware detection and attention-driven segmentation, explicitly designed for agricultural situations, shows the novelty, and the model improves detection quality by capturing fine-grained spatial characteristics and allowing for the thorough separation of overlapping anomalies compared to traditional CNN-YOLO pipelines. This model presents a reliable solution for real-time smart agriculture systems aimed at proactive crop health management. Abstract
How to Cite
Downloads
Similar Articles
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

