Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.04Keywords:
Attention mechanism, Deep learning, Mask-RCNN, Plant-village dataset, Smart agriculture, U-Net model.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Early and accurate identification of pests, diseases, and weeds in modern agriculture is crucial for sustainable crop management and yield optimization to increase productivity. This research proposes a hybrid deep segmentation framework that integrates Dual Attention UNet and Mask-RCNN methods to enhance the precision and reliability of plant disease detection under diverse environmental conditions. The core objective is to improve segmentation accuracy and object localization, particularly in complex field imagery with overlapping foliage, variable lighting, and background noise. The proposed architecture uses the Plant-Village dataset, which includes a diverse collection of annotated crop images representing multiple classes of pests, diseases, and weed species. The Dual Attention UNet emphasizes salient spatial and channel-wise features, enabling refined pixel-level segmentation of affected regions. This is followed by a Mask-RCNN module that performs instance-aware segmentation and bounding box localization, facilitating detailed identification of individual anomalies even in cluttered scenes. The framework is further enhanced through data augmentation and transfer learning strategies to support generalization across varying crop types. Experimental evaluation reveals that the proposed deep learning-based model achieves a Detection Accuracy (DA) of 96.5%, an F1-Score of 95.2%, AUC-PR of 97.4%, Sensitivity of 96.5%, Scalability of 96.2% and a Processing Time (PT) of 12 seconds per batch, demonstrating both precision and efficiency. Moreover, the architecture shows a Scalability of 96.8%, ensuring robustness in large-scale deployments. The comprehensive results are compared with baseline models such as CNN, Faster R-CNN, and CBAM. The hybrid integration of instance-aware detection and attention-driven segmentation, explicitly designed for agricultural situations, shows the novelty, and the model improves detection quality by capturing fine-grained spatial characteristics and allowing for the thorough separation of overlapping anomalies compared to traditional CNN-YOLO pipelines. This model presents a reliable solution for real-time smart agriculture systems aimed at proactive crop health management. Abstract
How to Cite
Downloads
Similar Articles
- Thangatharani T, M. Subalakshmi, Development of an adaptive machine learning framework for real-time anomaly detection in cybersecurity , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Isreal Zewide, Wondwosen Wondimu, Melash Woldu, Kibnesh Admasu, Maize (Zea mays L.) Productivity as affected by different ratios of fertilizer (blended NPS) and inter row spacing at West Omo, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A vendor-constrained economic production quantity model integrating scrap recovery under sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Regasa Begna, Worku Masho, Wondosan Wondimu, Yaregal Tilahun, Tilahun Bekele, Benyam Tadesse, Haile Negash, Participatory evaluation and demonstration of productive performance of Bovans Brown chicken under village production system in Menit Shasha Woreda, West Omo Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

