Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.06Keywords:
Kannada Text-to-Braille, Speech Synthesis, Text-to-Speech (TTS), Support Vector Machine (SVM), Tacotron2, HiFi-GAN, WaveNet, Braille ConversionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Advancements in assistive technology have greatly improved accessibility for visually impaired individuals, enabling seamless interaction with textual content. This research introduces a novel approach that converts Kannada text into both speech and Braille, promoting multilingual accessibility. The proposed system incorporates a support vector machine (SVM) for Kannada text-to-Braille conversion and a deep learning-based text-to-speech (TTS) model for speech synthesis. The Braille translation module accurately maps Kannada characters to their respective Braille representations using SVM classifiers, ensuring precise conversion. Simultaneously, the speech synthesis component utilizes Tacotron2 for converting Kannada text into mel-spectrograms, followed by WaveNet/HiFi-GAN to produce high-quality Kannada speech. A dataset containing 2000 Kannada text-Braille pairs and corresponding text-speech samples is employed for training and evaluation. Experimental findings validate the effectiveness of the proposed system in accurately translating Braille while generating clear and natural Kannada speech. The integration of machine learning and deep learning techniques enhances efficiency, scalability, and usability, making this a reliable assistive tool for visually impaired Kannada-speaking individuals.Abstract
How to Cite
Downloads
Similar Articles
- G. Hemamalini, V. Maniraj, Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Karthik Baburaj, Navaneeth kattil Madathil, Roshini Barkur, NLP Based Voice Assistant Usage on Consumer Shopping , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bhuvaneshwarri Ilango, A machine translation model for abstractive text summarization based on natural language processing , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
You may also start an advanced similarity search for this article.

