Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.04Keywords:
Attention mechanism, Deep learning, Mask-RCNN, Plant-village dataset, Smart agriculture, U-Net model.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Early and accurate identification of pests, diseases, and weeds in modern agriculture is crucial for sustainable crop management and yield optimization to increase productivity. This research proposes a hybrid deep segmentation framework that integrates Dual Attention UNet and Mask-RCNN methods to enhance the precision and reliability of plant disease detection under diverse environmental conditions. The core objective is to improve segmentation accuracy and object localization, particularly in complex field imagery with overlapping foliage, variable lighting, and background noise. The proposed architecture uses the Plant-Village dataset, which includes a diverse collection of annotated crop images representing multiple classes of pests, diseases, and weed species. The Dual Attention UNet emphasizes salient spatial and channel-wise features, enabling refined pixel-level segmentation of affected regions. This is followed by a Mask-RCNN module that performs instance-aware segmentation and bounding box localization, facilitating detailed identification of individual anomalies even in cluttered scenes. The framework is further enhanced through data augmentation and transfer learning strategies to support generalization across varying crop types. Experimental evaluation reveals that the proposed deep learning-based model achieves a Detection Accuracy (DA) of 96.5%, an F1-Score of 95.2%, AUC-PR of 97.4%, Sensitivity of 96.5%, Scalability of 96.2% and a Processing Time (PT) of 12 seconds per batch, demonstrating both precision and efficiency. Moreover, the architecture shows a Scalability of 96.8%, ensuring robustness in large-scale deployments. The comprehensive results are compared with baseline models such as CNN, Faster R-CNN, and CBAM. The hybrid integration of instance-aware detection and attention-driven segmentation, explicitly designed for agricultural situations, shows the novelty, and the model improves detection quality by capturing fine-grained spatial characteristics and allowing for the thorough separation of overlapping anomalies compared to traditional CNN-YOLO pipelines. This model presents a reliable solution for real-time smart agriculture systems aimed at proactive crop health management. Abstract
How to Cite
Downloads
Similar Articles
- Ashish Nagila, Abhishek K Mishra, The effectiveness of machine learning and image processing in detecting plant leaf disease , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

