Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.04Keywords:
Attention mechanism, Deep learning, Mask-RCNN, Plant-village dataset, Smart agriculture, U-Net model.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Early and accurate identification of pests, diseases, and weeds in modern agriculture is crucial for sustainable crop management and yield optimization to increase productivity. This research proposes a hybrid deep segmentation framework that integrates Dual Attention UNet and Mask-RCNN methods to enhance the precision and reliability of plant disease detection under diverse environmental conditions. The core objective is to improve segmentation accuracy and object localization, particularly in complex field imagery with overlapping foliage, variable lighting, and background noise. The proposed architecture uses the Plant-Village dataset, which includes a diverse collection of annotated crop images representing multiple classes of pests, diseases, and weed species. The Dual Attention UNet emphasizes salient spatial and channel-wise features, enabling refined pixel-level segmentation of affected regions. This is followed by a Mask-RCNN module that performs instance-aware segmentation and bounding box localization, facilitating detailed identification of individual anomalies even in cluttered scenes. The framework is further enhanced through data augmentation and transfer learning strategies to support generalization across varying crop types. Experimental evaluation reveals that the proposed deep learning-based model achieves a Detection Accuracy (DA) of 96.5%, an F1-Score of 95.2%, AUC-PR of 97.4%, Sensitivity of 96.5%, Scalability of 96.2% and a Processing Time (PT) of 12 seconds per batch, demonstrating both precision and efficiency. Moreover, the architecture shows a Scalability of 96.8%, ensuring robustness in large-scale deployments. The comprehensive results are compared with baseline models such as CNN, Faster R-CNN, and CBAM. The hybrid integration of instance-aware detection and attention-driven segmentation, explicitly designed for agricultural situations, shows the novelty, and the model improves detection quality by capturing fine-grained spatial characteristics and allowing for the thorough separation of overlapping anomalies compared to traditional CNN-YOLO pipelines. This model presents a reliable solution for real-time smart agriculture systems aimed at proactive crop health management. Abstract
How to Cite
Downloads
Similar Articles
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Isreal zewide, Abde S. Hajigame, Wondwosen Wondimu, Kibinesh Adimasu, Response of Bread Wheat (Triticum aestivum L.) Varieties to Blended NPSB Fertilizer Levels in Sori Saylem District, South-West Ethiopia , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Maya Kumari, Vikas Y Patade, Z Ahmad, INVOLVEMENT OF PLANT MICRORNAS IN ABIOTIC STRESS RESPONSES , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

