Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.27Keywords:
Steganalysis, Deep Learning, Dilation, Separable Convolution, SteganographyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The challenge of effective and precise steganalysis is crucial in the field of digital steganography. Steganalysis is a constantly evolving field of study that looks for hidden data in digital media. With the recent developments in communication and information technology, as well as information law compliance, image Steganalysis has drawn a lot of attention. The methods for steganography that are now available make it harder to identify steganographic material. This study presents a comprehensive investigation of the DDS_SE-Net architecture based on convolution neural networks employing various datasets in steganalysis using key performance measures, including accuracy, recall, precision, and F1-score. Additionally, this study looks at how rate of change of dilation in DDS_SE-Net contributes to the improved outcomes. In this work dilation rate of 3 gave comparatively better accuracy of 92.9% against WOW, 89.2 and 89.8% against S-UNIWARD and HILL, respectively. The results show that the deep learning framework selected and the data used in training have a major impact on how well the model performs steganalysis.Abstract
How to Cite
Downloads
Similar Articles
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
You may also start an advanced similarity search for this article.

