Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.27Keywords:
Steganalysis, Deep Learning, Dilation, Separable Convolution, SteganographyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The challenge of effective and precise steganalysis is crucial in the field of digital steganography. Steganalysis is a constantly evolving field of study that looks for hidden data in digital media. With the recent developments in communication and information technology, as well as information law compliance, image Steganalysis has drawn a lot of attention. The methods for steganography that are now available make it harder to identify steganographic material. This study presents a comprehensive investigation of the DDS_SE-Net architecture based on convolution neural networks employing various datasets in steganalysis using key performance measures, including accuracy, recall, precision, and F1-score. Additionally, this study looks at how rate of change of dilation in DDS_SE-Net contributes to the improved outcomes. In this work dilation rate of 3 gave comparatively better accuracy of 92.9% against WOW, 89.2 and 89.8% against S-UNIWARD and HILL, respectively. The results show that the deep learning framework selected and the data used in training have a major impact on how well the model performs steganalysis.Abstract
How to Cite
Downloads
Similar Articles
- Ritu Nagila, Abhishek Kumar Mishra, Ashish Nagila, Role of big data in enhancing lung cancer prediction and treatment , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Bhaskar Pandya, Pradipsinh Zala, Vocational education and lifelong learning: Preparing a skilled workforce for the future , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

