
Abstract
The challenge of effective and precise steganalysis is crucial in the field of digital steganography. Steganalysis is a constantly evolving 
field of study that looks for hidden data in digital media. With the recent developments in communication and information technology, 
as well as information law compliance, image Steganalysis has drawn a lot of attention. The methods for steganography that are now 
available make it harder to identify steganographic material. This study presents a comprehensive investigation of the DDS_SE-Net 
architecture based on convolution neural networks employing various datasets in steganalysis using key performance measures, including 
accuracy, recall, precision, and F1-score. Additionally, this study looks at how rate of change of dilation in DDS_SE-Net contributes to the 
improved outcomes. In this work dilation rate of 3 gave comparatively better accuracy of 92.9% against WOW, 89.2 and 89.8% against 
S-UNIWARD and HILL, respectively. The results show that the deep learning framework selected and the data used in training have a 
major impact on how well the model performs steganalysis.
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Introduction
Data security can be efficiently maintained by using 
steganography, a technology that hides secret data inside 
a carrier for clandestine transmission. Steganalysis, on 
the other hand, is an anti-steganography method that 
seeks to determine whether or not hidden data are buried 
into a carrier. This is crucial since it stops steganography 
from being abused. The most prevalent mediums in 
steganography and steganalysis are digital photographs. 
By minimizing the false positive (FP) and false negative 
(FN) rates, the steganalysis algorithms may detect the 
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existence of secret data in the stego signal, which deviates 
from the statistical characteristics of the original signal, by 
employing DL approaches. A common scenario encountered 
by steganalysts transitioning from lab-based steganalysis 
to real-world applications is when their detector is trained 
on photos from one cover source and then applied to 
images from another. The majority of steganalysis research 
used pre-existing datasets, such as BOSSbase (Westfeld & 
Pfitzmann, 2000), BOWS2 (Ankita Gupta, 2023), Alaska(Yousfi 
et al., 2019), etc., for their experimentation. An effective 
design provides excellent accuracy and performs effectively 
with a variety of datasets. Using a real-time dataset, the 
CNN-based DDS_SE-Net (Dilated Depthwise Separable 
convolutions with Squeeze and Excitation blocks) (C Victoria 
Priscilla, 2024) architecture performed well. This research 
examines how DDS_SE-Net functions using a variety of 
current and real-time datasets. The analysis is also done on 
dilation rate changes in DDS_SE-Net. In order to create the 
minimal structure known as the dilated filter, the dilation rate 
operates by adding spaces between the convolutional filter’s 
weights. By inserting these gaps, the filter can bypass some 
input values and concentrate on those that are divided by 
the specified gap. This helps in expanding the view without 
increasing the parameters.

Related Work
Numerous CNN architectures were created with the 
introduction of deep learning (DL) to handle various image 
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sources in steganalysis. With three fully connected layers 
that culminate with a Softmax layer and five convolutional 
layers coupled by Gaussian activation, the Qian-Net 
architecture (Qian et al., 2015) uses high-pass filters to reduce 
the image’s content. In Zhu-net architecture (Zhang et al., 
2020), separable convolutions are utilized to increase the 
signal-to-noise ratio by constricting the image content and 
utilizing the channel correlation of the residuals. SPP is used 
to gather the local features. Adopting data augmentation 
helps the network function better. GBRAS-NET(Reinel et 
al., 2021) incorporates the most advantageous features 
from previous architectures. During the pre-processing 
stage, a total of 30 SRM filters are employed, utilizing a 
3*TanH activation function. The feature extraction process 
involves the utilization of a sequence of convolution layers 
that incorporate depth-wise separable convolutions. This 
model incorporates a soft max layer along with global 
average pooling in the absence of a fully connected layer. 
The utilization of inverted residual blocks paired with a self-
attention mechanism in CIRNet (Ankita Gupta, 2024) aims to 
minimize both the detection error rate and computing cost 
for steganalysis. The inverted residual blocks incorporate 
lightweight depth-wise and pointwise convolutions, as well 
as a self-attention module. The integration described in the 
study reduces the number of floating-point operations and 
network parameters while simultaneously improving the 
prominence of feature maps associated with the embedding 
regions. In the feature extraction phase of architecture 
in (Ntivuguruzwa & Ahmad, 2023), two-dimensional 
depthwise separable convolutions were utilised to enhance 
the signal-to-noise ratio, while conventional convolutions 
were employed to model local features. A revolutionary 
architecture for deep convolutional neural networks that 
Inception inspired was introduced by (Chollet, 2017). In this 
architecture, the modules of Inception have been replaced 
by depthwise separable convolutions.

Convolutional neural networks (CNNs) use dilated 
convolution, sometimes referred to as atrous convolution, 
a sort of convolution operation that allows the network 
to have a bigger receptive field without raising the 
number of parameters. The idea of dilated convolution 
originates with wavelet decomposition (Shensa, 1992). 
The dilated convolution operator, which performs wavelet 
decomposition, has been mentioned frequently. The 
conventional CNN’s drawback is its enormous processing 
power consumption. To tackle this problem, a dilated CNN 
model is built. The hybrid dilated CNN (HDC) (Lei et al., 2019) 
is built to overcome the detail loss problem in the dilated 
CNN model by piling dilated convolution kernels with 
different dilation rates one after the other. 

Squeeze-and-excitation networks were developed by 
stacking the SE blocks together, and they demonstrated 
exceptional performance on challenging datasets 

(Hu, 2018). Extra features can be extracted from the digital 
image using the feature extraction along with the fusion 
layer. Therefore, memory utilization is increased while 
inference efficiency is boosted when the RepVgg block 
is used in SFR-Net (Xu et al., 2021). The SE block increases 
the detection accuracy rate by learning feature weights to 
generate valid or ineffective feature maps with moderate 
weights or effective ones with massive weights. The benefits 
of convolutions and attention mechanisms are combined in 
the convolutional vision transducer CVTStego-Net (A et al., 
2024) to capture both regional and global dependencies in 
spatial domain image steganalysis. In the pre-processing 
stage, a bifurcation made up of 30 SRM filters is employed 
to enhance steganographic noise. The noise extraction and 
analysis stage uses SE-Block with residual operations to 
lessen the effect of redundant data and increase sensitivity 
in steganographic noise. During the classification phase, the 
local and global spatial associations of the steganographic 
noise are connected by combining SE-Block with a 
convolutional vision converter.

Materials and Methods
Three crucial elements make up the CNN-based DDS_SE-Net 
architecture used in this study’s feature extraction phase. SE 
blocks, dilation, and depthwise separable convolution, as 
seen in Figure 1. The filter is dilated in a dilated convolution 
operation by adding gaps within the filter values. The 
dilation rate is a hyperparameter and can be changed to 
control the gap sizes. The dilated convolution decreases to 
a regular convolution at a dilation rate of 1. It contributes 
to a greater receptive field without raising parameters 
and lowers processing power usage. As part of a network 
architecture technique called depthwise separable 
convolution, a convolution operation is divided into two 
parts: depthwise convolution, which operates on individual 
input channels and pointwise convolution, which boosts the 
dimension of the feature map by incorporating information 
from different channels. This method lessens the overfitting 
issue and parameter count.

A network’s multiple filters will first search each input 
channel for spatial properties, then combine the data over 
all possible output channels. When generating the output 

Figure 1: Process flow for varied datasets with DDE_SE-Net
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feature maps, the network gives each of its channels the 
same weight. By including a content-aware technique to 
adaptively weight each channel, SE Nets aim to change this. 
Better precision and robustness are aided by it.

Experiments
The experiments are conducted with three existing and 
one real time dataset to analyse the working of DDS_SE-Net 
architecture. 

Data collection
BOSSbase includes an image steganalysis data set made 
up of 10,000 (512*512*1) grayscale images from 7 distinct 
cameras. About 11,536 color JPEG-formatted images are 
included in the BOWS2 database for image steganography. 
CNN applications employ ALASKA 8, a large dataset for 
image steganography that includes over 250,000 images 
divided into four different steganography categories. 
The real-time dataset consists of images collected online 
from Google, which are of different dimensions. There 
are differences in size and shape among the collected 
photographs. All the pictures were downsized to 480 by 
640 pixels using an image editing application. From each 
dataset as in Figure 2, 5000 randomly chosen images are 
taken for this venture because of the processing complexity. 

Parameter setting using dilation rate
The convolution operation’s dilation rate parameter regulates 
how widely apart the kernel (filter) elements are separated. 
The kernel expands when there is dilation. The kernel can 
cover a greater portion of the input data without rising in 
size due to this stretching phenomenon. It provides more 
efficiency, aids in the creation of more complex feature maps, 
and detects larger patterns. Deep learning models may 
effectively identify patterns at many scales by varying the 
dilation rate, which enhances their effectiveness on tasks such 

as object recognition as well as image classification (Pandey, 
2024). From Figure 3, it can be seen how the feature detector 
kernel is spaced when the dilation rate is 1,2 and 3. When the 
dilation rate is 1, it would be a normal convolution operation.

Results and Discussion
Once the data was collected and pre-processed, the 
three steganographic algorithms that were employed to 
produce the stego images were WOW (Binghamton, 2012), 
S-UNIWARD (Holub et al., 2014), and HILL (Li et al., 2014) with 
payload 0.4. Stego detection was accomplished by feeding 
the DDS_SE-Net model, with both the cover and the stego 
containing a dilation rate of 3. The results were tabulated 
in Table 1. Furthermore, the metrics for the real-time 
dataset were determined against the three steganographic 
methods, with changes in dilation rate of 2, 3, and 4, and the 
results are compared in Table 2. 

The effectiveness of DDS_SE-Net model has given 
good accuracy with four different datasets against three 
steganograpic algorithms with 0.4 bpp payload as in Table 1.  
With BOSSbase and real-time dataset, accuracy was more 
against WOW with 89.8 and 92.9% respectively. With BOWS2 
and Alaska dataset, against S-UNIWARD, better accuracy of 
90.2 and 90.07%, respectively was reached (Figure 4).

 
(a)

 
(b)

 
(c)

 
(d)

Figure 2: Sample dataset from (a) BOSSbase (b) BOWS2 (c) Alaska (d) Real-time

Figure 3: Sliding of feature detector kernel on the input feature map 
when dilation rate is (a)1 (b)2 and (c) 3
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Table 2 gives the results of classification metrics of DDS_
SE-Net model with varying dilation rates using real-time 
dataset against three popular steganographic algorithms 
with payload 0.4 bpp. It could be noted that when the 
dilation rate is 3, the accuracy and F1-score are more than 
the dilation rates 2 and 4 in this scenario. In case the dilation 
rate is 2, the coverage area by the filter on the input data is 
not very larger than the normal convolution. When dilation 
rate is 4, the network might have missed the essential fine 
details due to oversimplification, thus, resulting in less 
accuracy when compared to the dilation rate of 3 as in 
Figure 5, which has larger coverage and has not missed any 
important details too. This might change with other datasets 
and in other network models.

Conclusion
Using a variety of datasets for steganalysis, this work provides 
a thorough study of the DDS_SE-Net architecture based 
on convolution neural networks. The datasets used are 
BOSSbase, BOWS2, Alaska and real-time dataset. The results 
show that DDS_SE-Net architecture gives considerably 
better results using varying datasets against three prevailing 
Steganographic algorithms. Using BOSSbase (89.8 and 90%) 
and Real-time dataset (92.9 and 92.7%), accuracy and F1-score 
were more against the WOW algorithm. Accuracy and 
F1-score were high against S-UNIWARD with BOWS2 (90.2 
and 90.3%) and Alaska (90.07 and 90.2%) datasets. Moreover, 
experiments were performed with varying dilation rates of 2, 
3 and 4, where better results were achieved with dilation rate 
3 using a real-world dataset with DDS_SE-Net model with 
92.9% against WOW, 89.2 and 89.8% against S-UNIWARD and 
HILL, respectively. In the future, a framework will be created 
with best classification model with the best optimizer and 
dataset for steganalysis, which could be applied for any 
other application.

Table 1: Comparison of evaluation metrics of DDS_SE-Net against 
WOW, S-UNIWARD, and HILL with 0.4bpp using BOSSbase, BOWS2, 

Alaska and real-time datasets with dilation rate of 3

Dataset Steganographic 
algorithm Accuracy Precision Recall F1 Score

BOSSBASE

WOW 89.8 89.5 90.6 90.0

S-UNIWARD 89.3 87.4 92.0 89.6

HILL 89.3 90.9 88.3 89.6

BOWS2

WOW 87.2 87 87.7 87.4

S-UNIWARD 90.2 89 91.6 90.3

HILL 88.9 88.9 90.4 89.6

ALASKA

WOW 87.5 87.2 88.0 87.6

S-UNIWARD 90.07 90.2 90.3 90.2

HILL 89.6 88.3 91.2 89.7

REAL-TIME

WOW 92.9 91.5 94.0 92.7

S-UNIWARD 89.2 91.4 86.9 89.0

HILL 89.8 91.5 87.9 89.6

Figure 4: Comparison of accuracy of DDS_SE-Net against WOW, 
S-UNIWARD and HILL with 0.4 bpp using four different datasets

Table 2: Comparison of evaluation metrics of DDS_SE-Net against 
WOW, S-UNIWARD, and HILL with 0.4 bpp using real-world datasets 

with dilation rate of 2, 3 and 4

Steganographic 
algorithm

Dilation 
Rate Accuracy Precision Recall F1 Score

WOW

2

87.17 87.35 87.28 87.31

S-UNIWARD 87.26 87.4 87.5 87.5

HILL 86.3 85.2 86.8 86.0

WOW

3

92.9 91.5 94.0 92.7

S-UNIWARD 89.2 91.4 86.9 89.0

HILL 89.8 91.5 87.9 89.6

WOW

4

87.5 87.08 87.64 87.36

S-UNIWARD 88.08 87.3 89.8 88.5

HILL 88.75 88.10 90.2 89.14

Figure 5: Comparison of accuracy of DDS_SE-Net against WOW, 
S-UNIWARD and HILL with 0.4 bpp using real world dataset with 

varying dilation rates
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