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Hybrid deep segmentation architecture using dual attention
U-Net and Mask-RCNN for accurate detection of pests,
diseases, and weeds in crops

Deepa Ramachandran VR*", Kamalraj N?

Abstract

Early and accurate identification of pests, diseases, and weeds in modern agriculture is crucial for sustainable crop management
and yield optimization to increase productivity. This research proposes a hybrid deep segmentation framework that integrates dual
attention UNet and Mask-RCNN methods to enhance the precision and reliability of plant disease detection under diverse environmental
conditions. The core objective is to improve segmentation accuracy and object localization, particularly in complex field imagery with
overlapping foliage, variable lighting, and background noise. The proposed architecture uses the plant-village dataset, which includes a
diverse collection of annotated crop images representing multiple classes of pests, diseases, and weed species. The dual attention UNet
emphasizes salient spatial and channel-wise features, enabling refined pixel-level segmentation of affected regions. This is followed by
a Mask-RCNN module that performs instance-aware segmentation and bounding box localization, facilitating detailed identification
of individual anomalies even in cluttered scenes. The framework is further enhanced through data augmentation and transfer learning
strategies to support generalization across varying crop types. Experimental evaluation reveals that the proposed deep learning-based
model achieves a detection accuracy (DA) of 96.5%, an F1-score of 95.2%, AUC-PR of 97.4%, sensitivity of 96.5%, scalability of 96.2%
and a processing time (PT) of 12 seconds per batch, demonstrating both precision and efficiency. Moreover, the architecture shows a
scalability of 96.8%, ensuring robustness in large-scale deployments. The comprehensive results are compared with baseline models
such as CNN, faster R-CNN, and CBAM.The hybrid integration of instance-aware detection and attention-driven segmentation, explicitly
designed for agricultural situations, shows the novelty, and the model improves detection quality by capturing fine-grained spatial
characteristics and allowing for the thorough separation of overlapping anomalies compared to traditional CNN-YOLO pipelines. This
model presents a reliable solution for real-time smart agriculture systems aimed at proactive crop health management.

Keywords: Attention mechanism, Deep learning, Mask-RCNN, Plant-village dataset, Smart agriculture, U-Net model.

Introduction
In recent years, the agricultural sector has grown dependent
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on intelligent technologies to manage crop health,
productivity, and sustainability challenges. Among these
challenges, the early and accurate detection of pests,
diseases, and weeds remains a critical concern, especially in
large-scale farming environments where manual inspection
is labor-intensive and error-prone. As plant health anomalies
significantly reduce yield and quality, precision-based
detection mechanisms using deep learning have emerged
as transformative tools in modern agricultural technology
solutions. State-of-the-art models like deep learning-based
dual-CNN and faster R-CNN have demonstrated significant
promise in feature extraction and object detection tasks.
Dual CNN architectures enhance representation learning
by capturing complementary feature hierarchies through

Published: 31/07/2025
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parallel convolutional streams, while faster R-CNN offers
robust region proposal and classification for real-time
object localization. In parallel, the convolutional block
attention module (DL-CBAM) has been integrated into
deep architectures to refine spatial and channel-wise
attention, which significantly improves the attention on
critical regions in complex agriculturalimages. Despite these
advancements, challenges include overlapping foliage,
inconsistent lighting, visual similarity between classes,
and dense background that continue to slow down the
segmentation precision and overall detection reliability. This
research gap underscores the need for a more integrated
approach thatidentifies anomalies and segments them with
high spatial resolution.

Recent research highlights significant strides in
agricultural image analysis through deep learning. A novel
U-Net hybrid proposed for pest segmentation demonstrated
improved boundary clarity and class separation in noisy
images (N. Biradar et al., 2024). Image segmentation
methods for crop health assessment continue to evolve,
with attention mechanisms and multi-scale architectures
improving pixel-level accuracy (L. Lei et al., 2024). Deep
learning-driven weed-crop differentiation is also gaining
traction for real-time field automation (H.-R. Qu et al., 2024).
A comprehensive review emphasized the superiority of
DL models over traditional techniques in identifying plant
diseases and pest infestations across complex conditions (M.
Shoaib et al., 2025). This research proposes a novel hybrid
segmentation framework that synergistically combines Dual
Attention UNet with Mask-RCNN to address these limitations.
The dual attention UNet component focuses on extracting
spatially enhanced feature maps by integrating channel and
position attention, while Mask-RCNN performs instance-
aware segmentation and precise boundary localization.
This dual-stage system is particularly suited for agricultural
scenarios where multiple pests or diseases coexist within
the same frame. The study targets the explicit detection
under varying environmental conditions using the Plant-
Village dataset, a widely used benchmark for plant anomaly
detection. By addressing the limitations of existing pipelines,
this work contributes a highly scalable, interpretable, and
accurate solution to advance smart agriculture toward real-
time, field-deployable systems.

Problem Statement

To develop a robust hybrid deep learning framework
that integrates dual attention UNet and Mask-RCNN for
accurately detecting and segmenting pests, diseases,
and weeds in crops. The primary goal is to enhance pixel-
level segmentation accuracy and instance-level detection
precision under real-world agricultural conditions,
where image complexity, overlapping anomalies, and
environmental variability often degrade conventional
model performance. The proposed hybrid model employs

the Dual Attention method to highlight spatial and relevant
intrinsic features during segmentation, which improves the
model’s focus on core affected regions. Simultaneously,
using instance-aware segmentation, Mask-RCNN is used
to localize and differentiate multiple anomalies within a
single frame. This dual-stage architecture ensures that even
subtle or co-occurring threats are effectively segmented
and detected. The significant contributions include the
design of an integrated attention-guided pipeline, using
the Plant-Village dataset for diverse crop anomaly training,
and optimizing processing time and scalability for field
deployment. By combining the strengths of attention-
based feature enhancement with region-specific detection,
the framework directly addresses existing challenges
in misclassification, low boundary clarity, and poor
generalization across crop varieties.

Objectives of the Proposed Work
The main objective of this research is to introduce a robust &
intelligent deep learning model for accurate detection and
segmentation of pests, diseases, and weeds in crops under
complex agricultural environments. The key objectives are
i) integration of dual attention UNet for precise pixel-wise
segmentation; ii) Mask-RCNN to achieve instance-level
localization of multiple coexisting anomalies; iii) enhancing
spatial attention mechanisms to improve boundary clarity
and reduce misclassification; iv) to ensure high adaptability
and scalability across varying crop types and environmental
conditions using the Plant-Village dataset; v) to reduce
system processing time and maintains high detection
accuracy, making it highly suitable for real-time usage in
precision farming; etc. To attain the objectives, the major
steps are followed:

« Preprocessing: Curate and preprocess agricultural
image data from the Plant-Village dataset.

« Segmentation: Train Dual Attention UNet for detailed
spatial and channel-aware segmentation.

+ Localization: Integrate Mask-RCNN for instance-aware
object detection and boundary refinement.

- Data Augmentation: Optimize the combined
architecture using data augmentation and transfer
learning.

« Evaluation: Evaluate model performance using
accuracy, F1-score, sensitivity, AUC-PR, and scalability
metrics.

Related Works

A recent advance in deep learning has significantly
transformed automated agricultural diagnostics, especially
in pest, disease, and weed detection systems. In a
comprehensive benchmarking study, a multi-stage Faster
R-CNN-based framework was developed that accurately
classified and detected individual weed species at the object
level. The model highlighted the strength of region-based
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CNNs in delineating multiple overlapping plant typesin field
environments (Hasan et al., 2023). Focusing on real-time
edge computing, a lightweight YOLOv8 model is designed
and enhanced with the multi-attention module (CBAM),
enabling early cotton weed detection on edge devices.
The integration of CBAM improved feature refinement
and allowed the model to dynamically prioritize critical
visual cues, enhancing detection under resource-limited
conditions (Karim et al., 2024). In another study, a dual
CNN framework was proposed to detect pests, diseases,
and weeds. The D-CNN multi-path convolutional design
facilitated enriched feature learning, which proved vital for
improving crop yield in dense vegetation imagery (Meena
et al., 2023). YOLOvV5 was used to identify multiple weed
growth stages in wheat fields. By leveraging stage-wise
classification, the YOLOV5 system achieved high detection
accuracy across phenological phases, reinforcing the
applicability of deep detection models across dynamic
agricultural timelines (Guzel et al., 2024). Small pest
detection using deep learning object detection algorithms
was explored, and the importance of detecting minor
infestations before escalation was highlighted, using fine-
grained annotation strategies in real-time surveillance
models (Khalid et al., 2023). An enhanced deep learning
feature extraction model specifically optimized for pest and
disease detection was introduced, where the model uses
integrated visual feature amplification strategies to improve
detection precision and reduce false alarms across varied
backgrounds (Yuan et al., 2024). Table 1 shows the literature
analysis of prevailing models.

Research Gap

Though deep learning applications have shown significant
progress in precision agriculture, most existing models
struggle with precise segmentation and detection when
multiple anomalies, such as pests, diseases, and weeds,
co-occur within a single image. Traditional CNN and YOLO-
based approaches often lack the spatial awareness to
isolate overlapping regions or small-scale infestations in
complex field environments. Furthermore, current models
rarely integrate attention mechanisms and instance-level
detection in a unified framework. Limited research on
attention-guided segmentation specifically tuned for
agricultural datasets like plant-village. This creates a clear
gap for a robust, dual-stage architecture that enhances
feature focus through attention and also segments and
localizes anomalies with high precision. Addressing this gap
improves early crop health diagnostics and enables smarter,
real-time agricultural decision-making.

Proposed Methodology

The proposed framework combines dual attention U-Net
with Mask-RCNN (DA U-Net with Mask-RCNN) to deliver
high-precision detection and segmentation of crop pests,
diseases, and weeds. First, we preprocess the plant-village

dataset, which includes thousands of annotated images
from multiple crop species under varied lighting and growth
stages. Major features extracted include color texture, leaf
shape patterns, disease lesion boundaries, and degree
of infestation, providing rich representations for model
learning. Dual attention U-Net processes these features
through channel attention, highlighting critical spectral cues
(e.g., discolorations), and spatial attention, sharpening focus
on damaged areas. This attention-guided path produces
refined pixel-level segmentation masks, delineating
anomalies amidst overlapping foliage. These segmentation
outputs are then fed into Mask-RCNN, which performs
instance-level detection, generating bounding boxes and
per-instance masks for individual pests, diseases, or weeds.
This dual-stage approach ensures holistic segmentation and
precise object localization within cluttered scenes. Applied
data augmentation (rotations, color shifts) and transfer
learning using ImageNet-pretrained backbones to boost
accuracy further. This integrated deep learning model is
fully optimized, which proves segmentation accuracy, box
regression, mask quality, and attention consistency. This dual
attention U-Net with Mask-RCNN model leads to robust,
interpretable, and scalable detection performance across
diverse crop conditions.

Materials and Methods for Implementation
To assess the effectiveness of the proposed U-Net
with Mask-RCNN dual attention model, a structured
implementation approach was adopted, combining multi-
task deep learning models, standardized datasets, with
robust training practices. The focus was on achieving
high accuracy in detecting pests, diseases, and weeds
under diverse agricultural conditions. This section outlines
the detailed materials and methods, such as the dataset
employed, the model architecture, implementation tools,
training configurations, and optimization strategies used
throughout the development process. Specific attention
was given to data preparation, model scalability, and
generalization to ensure the system performs reliably in
real-world applications.

« Dataset Used: The Plant-Village dataset was used,
containing annotated images of healthy and affected
crop leaves with pests, diseases, and weeds.

« Framework: A hybrid architecture was developed by
integrating Dual Attention UNet for segmentation and
Mask-RCNN for instance-level detection.

+ Implementation Tool: Python, with TensorFlow and
MATLAB, is used forimplementation, computation and
comparative analysis.

« Training and Testing Ratio: The dataset is split in a
ratio of 80% training and 20% testing to ensure proper
evaluation of learning effectiveness.

« Data Augmentation: Adequate techniques such as
rotation, flipping, color jittering, and random cropping
were applied to improve model generalization.
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Table 1: Literature analysis of specific state of art object detection methods

Authors

Methods Adopted

Merits

Limitations

Buckner et al. (2021)

Demilie (2024)

Devi et al. (2024)

Dinesh & Lakshmanan
(2025)

Dolatabadian et al.
(2025)

Eldho & Nithyanandh
(2024)

Faisal et al. (2025)

Hasan et al. (2023)

Kim & Park (2022)

Liu & Wang (2021)

Nithyanandh (2025)

Nithyanandh et al.

(2023)

Prabhu et al. (2025)

Selvam & Joy (2024)

Silva et al. (2024)

Singh et al. (2020)

Upadhyay et al. (2025)

Arularasan et al.
(2024)

High-throughput image
segmentation with machine
learning

Comparative study of classical ML
vs. DL techniques

GAN-based secure data routing
for loT

Multiclass semantic segmentation
on citrus leaves

Image-based disease detection
using ML classifiers

3D CNN model on CT-DICOM
images

Customized deep learning for
cotton disease detection

Extended KDE clustering for
coffee leaf diseases

MTS-CNN (multi-task semantic
CNN)

Review of DL methods for plant
disease detection

YOLOv8 with Deep CNN on
soft computing-based object
detection

Firefly algorithm based EAP-IFBA
with adaptive sleep scheduling

Bio-inspired secure routing in 6G
wireless agriculture systems

AEN + Mask R-CNN with multi-
variable feature selection (custom
PL dataset)

Weed segmentation using UAV
images and deep learning

Plant-Village dataset creation
for plant disease detection
benchmarking

Review on DL models, datasets
and trends in precision agriculture

Deep learning-based sign
language recognition with visual
feature extraction

Scalable across multi-resolution plant
imaging; cross-scale adaptability

Provides statistical validation of
model performances

Introduces bio-inspired robustness
and data loss minimization

Identifies severity levels along with
disease classification

Large-scale dataset and robust
classification strategies

Accurate volumetric analysis; robust
segmentation for medical datasets

High precision detection under
diverse environmental settings

Novel unsupervised learning for
disease classification

Efficient in distinguishing weeds and
crops simultaneously

Broad coverage of DL architectures
and datasets

High speed detection with efficient
feature mapping

Energy-efficient and secure loT-based
communication

Enhanced authentication and energy
optimization

Improved lesion detection with
precise segmentation

Real-time UAV-based monitoring;
efficient for large field areas

Open-source benchmark with class
variety and annotation

Summarizes models with detailed
insights on future directions

Effective gesture modeling with
deep architecture integration

Less optimized for real-time
performance; lacks fine-grain object
separation

Limited use of advanced
segmentation; lacks real-time
experimentation

Focuses on data transmission; where
image classification is not done

Dataset focused on citrus plants only;
model generalization not addressed

Less use of attention-based deep
learning models

Deep object detection is don,
but lacks highlighted masking for
classifictaion

Model performance in multiclass
settings is not validated

Limited interpretability in
overlapping disease classes

Higher computational complexity in
dense scenarios

Deep segmentation and masking of
localized features

Focused more on system design than
object detection and deployment
results

Focused more on loT image-based
agricultural detection

Sensor optimization is focused, lacks
deep segmentation and masking

Lacks multiclass scalability for large
datasets

Weather and drone limitations affect
consistency

Imbalanced class distribution in
dataset

Scalability issues on multiclass image
dataset

Object detection with visualized
feature extraction is focused, lacks
deep spot localization

» TransferLearning: Pretrained weights (ImageNet) were
used to initialize backbone layers for faster convergence

and improved accuracy.

« Training Configuration: Model trained for 120 epochs
using Adam optimizer, monitored with performance
metrics like F1-Score, Detection Speed, and AUC-PR.

Preprocessing

PLANT-VILLAGE Dataset Attainment and

The proposed U-Net with Mask-RCNN model uses the

Plant-Village dataset, which was meticulously built to
support realistic disease detection of pests and weeds
in crops. It contains 54,303 images across 38 categories,
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with healthy and diseased leaves from 14 crop species. To
ensure robustness, we adopted the TensorFlow Datasets
version in this research, which maintains consistent image
quality and standardized labeling. Before the model
training, images are resized to 224 x 224 pixels to align with
standard CNN input dimensions. Pixel values were then
normalized per channel using the formula. x,,, =>=#, where
M and o are the mean and standard deviation,'\j/vhich are
calculated over the training set. This normalization ensures
stable convergence across varying lighting conditions.
Additionally, we compared RGB, HSV, and lab color spaces
to emphasize contrasts between healthy tissue and lesions.
Augmentation techniques such as random rotation (+20°),
horizontal and vertical imaging flips, brightness & contrast
adjustments, and Gaussian noise are used to enhance
training variety. This process expanded the dataset by 5x
and improved generalization to real-world scenarios. Self-
contained class balancing ensured that all 38 categories
were represented equitably during batch training.
Bounding box annotations were derived from image-level
labels and used only for diagnostic evaluation, reserving
mask-based labels for segmentation tasks. Altogether,
this preprocessing pipeline standardized inputs, mitigated
illumination bias, and enhanced feature separation, setting
the stage for effective attention-based segmentation and
instance detection. Table 2 shows the Plant-Village Crop
Species and Disease Classes to spot the classification.

To ensure balanced learning and reliable validation,
the complete Plant-Village dataset is split into an 80:20
ratio, where 80% is used for training and 20% reserved for
testing and validation purposes. In order to preserve class

distribution across both sets stratified sampling method
was applied to ensure that the minority classes receive
sufficient representation during learning, while the model’s
generalization ability is assessed on hidden samples, which
reflects the real-world variability and intra-class differences.

Key features include leaf texture patterns, which
help distinguish between healthy and infected surfaces,
and color distortions, such as yellowing, browning, or
lesion-specific discolorations that signal early disease
onset. Edge irregularities and shape deformations were
used to detect fungal spread and pest damage. Spatial
features such as i) spot distribution, ii) vein anomalies,
and iii) patchy growth patterns provided additional
context for accurate segmentation. Moreover, attention
mechanisms emphasized channel-level spectral variations
and spatial focus regions, improving the model’s ability to
isolate infected zones. These multi-dimensional features
collectively enabled the Dual Attention UNet to learn
nuanced patterns. Simultaneously, Mask-RCNN accurately
localized and differentiated instances across co-occurring
conditions, supporting robust detection under diverse
agricultural settings.

Data Augmentation and Feature Enhancement

To improve the generalization and robustness of the
proposed detection model, a comprehensive data
augmentation and feature enhancement strategy was
employed. Augmentation plays a critical role in mitigating
overfitting, especially when dealing with class imbalance
and limited variability in real-world agricultural datasets
like Plant-Village. Key augmentation techniques included
i) random rotation, ii) flipping, iii) zooming, iv) brightness

Table 2: Shows the Plant-Village Crop Species and Disease Classes to spot the classification

Plant species (PVD) Disease classes (including Healthy)

Apple Apple-Scab, Apple Black-Rot, Apple Cedar-Rust, Healthy
Blueberry Blueberry-Healthy, Blueberry-Disease(s)

Cherry Cherry Powdery Mildew, Healthy

Corn Corn Cercospora, Grey Leaf Spot, Healthy

Grape Grape Black Rot, Grape Esca (Black Measles), Healthy
Orange Orange Haunglongbing (Citrus Greening), Healthy
Peach Peach Bacterial Spot, Healthy

Pepper Pepper Bacterial Spot, Healthy

Potato Potato Early Blight, Late Blight, Healthy

Raspberry Raspberry Healthy

Soybean Soybean Healthy

Squash Squash Powdery Mildew, Healthy

Strawberry Strawberry Leaf Scorch, Healthy

Tomato Tomato Bacterial Spot, Early Blight, Late Blight, Leaf Mold, Septoria Leaf Spot, Spider Mites, Target Spot, Mosaic

Virus, Healthy

(Dataset Source: https://paperswithcode.com/dataset/plantvillage)
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variation, and v) Gaussian noise injection. These operations
simulate real-time variations in orientation, lighting,
and camera focus, improving the ability of the model to
recognize anomalies in indeterminate conditions. For
instance, rotation was applied using the equation below,

1,(x,,»)=1(x cos6— y,sin6,x sin6 +y, cos ) 1

where @ is the rotation angle in degrees. Brightness
adjustment was modeled using,

Ib(xl,yl):a .I(xl,yl) 2

where «a is the brightness scaling factor. Gaussian noise
~(0.0*) was added to simulate environmental noise. To
further enhance feature extraction, channel normalization
was performed using z-score scaling which is expressed as,

xlnorm = XI;IU (3)

where, Here, uando denote the mean and standard
deviation across training images, ensuring uniform intensity
scaling. These augmented inputs enriched the feature space
and reduced bias toward dominant conditions. Enhanced
features such as lesion borders, texture irregularities, and
spectral anomalies are highlighted using Dual Attention
mechanisms, which allows the network to focus on both
spatial detects and color-based indications. This finite
enhancement pipeline ensured better convergence
and improved both segmentation fidelity and object
localization, especially in cluttered or low-contrast crop
imagery.

Dual Attention UNet-Based Semantic Segmentation
The proposed segmentation framework integrates the
conventional U-Net structure with a multi-task dual attention
mechanism, which comprises both channel attention (CA)
and spatial attention (SA) modules. This design addresses the
need for precise localization of disease regions and subtle
textures associated with plant abnormalities.

Encoder-Decoder Architecture

The backbone of the network is a U-Net that follows a
symmetric encoder-decoder path, where the encoder
extracts hierarchical features through convolution
and pooling layers and the decoder reconstructs the
segmentation map using transposed convolutions and skip
connections for spatial detail retention.

Channel Attention Module (CA)

Channel attention helps the U-Net model to prioritize and
emphasize the meaningful feature maps by applying the
global pooling operations to generate descriptors, which
is expressed in the equation below.

F,, = AvgPool(F),F,, = MaxPool(F) @

These features are passed through a shared MLP to produce
weights, such as,

e () 0. )

Where, & isReLU, o is sigmoid, and W, W] are trainable
weights. Theinputfeature F isrescaledusing F' =M . F
which allows the network to weigh more informative
channels while suppressing irrelevant ones.

Spatial Attention Module (SA)

While CA learns “what,” the SA focuses on “where” the
disease or pest is spatially located, a channel-wise pooling
is first applied.

i :U(f”7 ([Angool(F’);MaxPool(F’)])) ©)

5]

Where, the feature map is refined as #"=F'F,,, allows
the network to assign attention to specific spatial zones,
typically leaf edges, lesions, or texture-deformed regions
shown in Figure 1.

Output Prediction

Thefinal refined map F" is then passed through a sigmoid-
activated convolution to generate a binary or multiclass
segmentation mask. The output highlights infected regions,
separated from healthy backgrounds with high spatial
resolution, which is shown in Figure 1.

Optimization Strategy

The total loss combines binary cross-entropy and Dice loss
which is mathematically expressed below.

L

total LBCE +¢€. LDice (7)

This process balances region-wise classification with shape-
aware overlap measurement. The Dual Attention U-Net
effectively enhances leaf region segmentation by explicitly
learning both feature importance and spatial relevance. This
proposed U-Net mechanism improves class separability
and highly supports robust localization of disease spread
patterns in real-world field conditions.

Channel Attention
Decoder

Encoder

Channel
Attention

Spatial
Attention

Input Image

Output
Prediction

Figure 1: Dual attention UNet-based semantic segmentation
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Instance-Aware Detection Using Mask-RCNN

Mask-RCNN is an advanced object detection model
designed to perform instance-aware segmentation, which
allows for the precise detection of each objectinstanceina
PLANT-VILLAGE image along with its class and shape. Unlike
semantic segmentation, which labels all pixels of the same
category identically, instance segmentation with Mask-
RCNN distinguishes and segments overlapping objects
individually, which is essential in agricultural scenarios with
clustered leaves or coexisting pests and diseases.

The model begins with a convolutional backbone to
extract multiple feature maps from the input datasetimage
shown in Figure 2. These features are forwarded to a Region
Proposal Network (RPN) that predicts the object regions
of interest (Rols). The RPN optimizes a binary classification
loss L, and a bounding box regression loss L., which is
expressed in the equation below.

LRPN = Lcls + éLreg (8)

As a next process, the proposed Rols are passed through
Rol-Align, which eliminates misalignment by preserving
exact spatial locations through bilinear interpolation. The
extracted regions are then sent to two branches, one for
multi-classification and bounding box refinement, and
another for binary mask prediction. The mask branch
outputs a binary segmentation map M for each Rol. The
total loss function is calculated using,

L= Lcls + Lbbox + Lmask (9)
where, L, is the multiclass classification loss, L,, . is the
bounding box regression loss and L, is the pixel-wise
binary cross-entropy (BCE) for mask prediction. The final
output includes class labels, refined bounding boxes,
and segmentation masks, providing a complete visual
understanding of the affected crop regions. This makes
Mask-RCNN especially valuable for detecting multiple
co-occurring anomalies such as pest clusters and leaf
infections in precision agriculture.

INPUT PROCESS

o 3

OUTPUT

Masking

Figure 2: Mask R-CNN structure and stages

Integration and Model Optimization Strategy

The proposed hybrid model is designed to integrate the
strengths of dual attention UNet and Mask R-CNN into
a unified pipeline, ensuring both pixel-level semantic
segmentation and instance-level object detection. To
facilitate seamless integration, the segmented output of
the Dual Attention UNet is fused with the feature map
backbone of the Mask R-CNN. This enables contextual
attention-weighted features to guide instance proposals
more accurately. The attention-enhanced feature map 7"
from the U-Net is passed into the RPN of Mask R-CNN. Rol-
Align ensures feature alignment, followed by classification
and mask prediction heads. A weighted fusion strategy
is applied to combine outputs of both branches which is
mathematically expressed as,

Ffused :aFUNet +(1_a)FRPN (10)

where, o €[0,1] controls the contribution from each module.
This dynamic fusion enhances robustness under varying
illumination and leaf texture complexities. Additionally, early
stopping and learning rate falloff techniques are integrated
to prevent overfitting and accelerate convergence using
, =m,-ﬁ , Where 7, is the early learning rate and ¢ is the
epoch index. Together, this hybrid optimization strategy
enhances model precision, stability, and adaptability for
real-time agricultural scenarios.

Transfer Learning for Backbone Initialization &
Convergence Enhancement

To accelerate training and to enhance model generalization,
the proposed hybrid architecture employs a transfer
learning method by initializing its backbone with pretrained
weights from large-scale datasets. This dynamic approach
utilizes rich low-level and mid-level features, such as fine
edges, multiple textures, and intrinsic patterns, which deep
convolutional networks have already learned. By transferring
these representations into the agricultural context, the
model converges faster and performs better with fewer
samples. The feature extraction [ is initialized as,

F (X;eo) = ConVNetpretra/ned (x) an

where, 6, is the pretrained weight, x ss the inputimage.
Fine-tuning is then applied to adjust the weights & with

respect to the new dataset Dp,am.

" =argmin(0)L(D,,,,.:0) (12)

Where, this optimization minimizes the task-specific loss L
using gradient descent, enabling the U-Net model to adapt
to significant plant-specific anomalies. Transfer learning
helps to reduce training time and avoids overfitting by
providing a stable starting point. It significantly benefits
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deep models like ResNet-based UNet and Mask-RCNN,
allowing efficient detection of subtle diseases and leaf-level
variations in agricultural datasets.

Real-Time Implementation

The proposed hybrid deep learning framework was
deployed in real-time to validate its practical applicability in
field-based crop monitoring systems. The complete pipeline,
from image acquisition to segmentation and instance
detection, was implemented on an edge-compatible
workstation with a GPU. High-resolution images of leaves
were captured using mobile or drone-based cameras and
directly fed into the integrated Dual Attention UNet +
Mask-RCNN model. Upon input, the dual attention UNet
performed fine-grained segmentation to highlight diseased
or pest-affected areas. These were then passed to the Mask-
RCNN for object-wise localization and classification. Figure 3
shows the dual stream segmentation architecture with
the complete process of the attention UNet + Mask-RCNN
model.

Real time example

For instance, when a farmer scans a tomato plant using a
smartphone, the system detects early blight regions, isolates
them via pixel-level segmentation, and draws bounding
boxes around each affected area. It labels the disease type
and severity within seconds, enabling timely intervention.
The average processing time perimage was approximately
12 seconds per batch, ensuring feasibility in real-time
decision-making. The model was optimized for lightweight
inference without compromising accuracy to maintain
responsiveness. Results, including annotated masks and
class labels, were rendered through a user-friendly interface.
This end-to-end system enables precision agriculture by

facilitating real-time detection, reducing manual labor, and
promoting proactive crop health management.

Process of U-Net with Mask-RCNN

Input: PLANT-VILLAGE Dataset (image and label

directories)
1. Begin:
2. Load the HD Images from PLANT-VILLAGE dataset

data.plantvillage
3. Perform pre-processing
Resize all images to uniform resolution (e.g.,
256%256).
Apply RGB to grayscale conversion (if needed).
Normalize image pixel values to range [0,1].
Perform image denoising using median or
Gaussian filters.
Augment data using flipping, rotation, zoom,
and contrast adjustments.
Split the dataset into training set (80%) and
testing set (20%).
4. Dual Attention UNet Configuration
Construct UNet encoder with 4 levels of convo-
lution + ReLU + max pooling.
Integrate Channel Attention (CA) after each
encoder block:
Compute global average pooling across chan-
nels.
Use sigmoid activation to weight each channel
adaptively.
Integrate Spatial Attention (SA) in decoder
blocks:
Apply convolutional filtering to spatial dimen-
sions.
Multiply attention mask with decoder features.

Dual Stream Segmentation Architecture
Input Module Brach 1 Branch 2: Classification Post-Processing
Dual Attention U-Net Mask-RCNN Module & Output Interface
Backbone Annctated
Input Layer .| | Dense Layer
p 4 CNN i v Detection
*17 ﬁ/f Output
Big Data Region e
Real-Time Crop Image Pre-Processing Proposal > Classification e e W
image Capture : Network Module Dashboard
(From Device) :"'9} Removal I T Visulalization
N::::;igzation o - Heaimap
ROIAlign+ -BoundingBox
Big Data Bounding'Box g;::ts':l;ts -Conf.Score
Image Pre-Processing —_— Regression
Output Feature Maps *17 Pest Type
Semantic Regions e A (eg. Apknas Timps)
Mask Head Disease Type
(Binary Masks (eg. Last Syan Bright)
per ROI} Weed Type.
(eg. Catejness Fortall)

Figure 3: U-Net with mask-RCNN architecture diagram
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Apply bottleneck layer with dense contextual
encoding.
Construct decoder: up-sample, concatenate
skip connections, apply attention.
Add final segmentation head with sigmoid
output.
Train Dual Attention UNet on semantic masks
(disease/pest/weed).
5. Mask-RCNN Configuration
Load ResNet50 as the backbone CNN.
Generate region proposals using Region Proposal
Network (RPN).
Apply ROI-Align to align feature maps.
Feed aligned ROIs to:
Classifier head (for object class prediction).
Bounding box regressor (for localization).
Mask head (for pixel-level binary mask
generation).
Train Mask-RCNN using instance-annotated
Plant-Village samples.
6. Feature Fusion Layer
Fuse Dual Attention UNet and Mask-RCNN
outputs:
Concatenate segmentation feature maps with
Mask-RCNN ROl features.
Apply a convolutional fusion layer.
Normalize and align features spatially.
7. Classification Layer
Pass fused features into dense fully connected
layer.
Apply Softmax to classify instances into:
Pest (Aphid, Thrips, etc.) , Disease (Blight, Rust,
etc.) , Weed (Foxtail, Crabgrass, etc.)
8. Output Generation
Generate pixel-level semantic segmentation map.
Overlay instance masks with unique object IDs.
Draw bounding boxes around each detected
object.
Assign class label with confidence score.
Visualize detection with annotated color mask +
label.
Create heatmap for severity and spread visualiza-
tion.
Export results to GUI dashboard or .png/.mat
files.

9. End

Confusion Matrix

The 2x2 confusion matrix for the proposed hybrid
model combining Dual Attention UNet and Mask-RCNN
demonstrates highly effective classification across three
iterative runs on the Plant-Village dataset. As a sample, the
matrix is calculated for 3 iterations. For each iteration, the
matrix quantifies the model’s ability to correctly distinguish
between healthy and diseased crop samples based on

Table 3: Confusion matrix of sample 3 iterations

Iteration TP N FP FN
Iteration 1 485 480 20 15
Iteration 2 482 470 30 18
Iteration 3 488 475 25 12

deep segmentation and instance-aware learning. Each
iteration was executed using a balanced split (80:20) and
fine-tuned. The results reflect consistently high precision
and minimal variance across multiple test cycles. In Iteration
3, which yielded the best performance, the model correctly
classified 475 healthy samples (True Negatives) and 488
diseased samples (True Positives). Only 25 healthy instances
were misclassified as diseased (False Positives), while 12
diseased samples were incorrectly identified as healthy
(False Negatives). These results align with the obtained
performance metrics: Detection Accuracy (DA) of 96.5%, F1
Score of 95.2%, AUC-PR of 97.4%, and Sensitivity of 96.5%.
Moreover, the Processing Time (PT) was observed to be
approximately 12 seconds per batch, supporting its viability
for near real-time deployment, which is shown in Figure 4.

The confusion matrix validates the model’s robustness
in detecting subtle variations across complex agricultural
imagery, which is shown in Table 3. The high true positive
rate reflects the precision of the Dual Attention UNet in
capturing semantic distinctions, while the Mask-RCNN
complements it by effectively isolating and labeling
individual infected regions. This matrix also underscores
the system’s scalability. Minimal variance between iterations
suggests consistency in learning across cross-validation
folds. Thus, the integration of dual attention mechanisms
and instance-based segmentation not only enhances
classification accuracy but also ensures generalization
across diverse field conditions and plant species. The
matrix-driven analysis highlights the strategic synergy of
attention-enhanced deep learning models with real-time
inference capacity, which makes a reliable tool for precision
agriculture.

Performance Evaluation of U-Net with Mask R-CNN

To assess the consistency and efficiency of the proposed
deep learning-based hybrid model, multiple performance
metrics were used, such as detection accuracy, F1-score,
AUC-PR, sensitivity, scalability and precision time. The
complete model is tested using MATLAB 2023a with support
from the Deep Learning Toolbox and GPU-based parallel
processing. These metrics were chosen to assess both the
classification strength and the segmentation precision of the
model. For a full boxed assessment, the performance of the
proposed model is compared against baseline models such
as CNN, Faster R-CNN and CBAM. The models underwent
thorough training and validation on the same preprocessed
dataset to ensure smooth and fairness comparison. The dual-
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Iteration 1

True Label
True Label

Diseased
Diseased

Healthy Diseased Healthy
Predicted Label

Iteration 2

Predicted Label

Iteration 3

True Label

Diseased

Diseased Healthy Diseased
Predicted Label

Figure 4: Confusion matrix of 3-class classification results

stream design of the proposed approach was specifically
assessed for its ability to segment complex disease patterns
and detect subtle pest occurrences. Evaluation also
considered computational efficiency and inference time,
particularly in real-time scenarios. The comparative analysis
helped validate the robustness and practical deployability
of the proposed model in agricultural environments.

(TPR+TNR) (13)

Accuracy= x100
(TPR+TNR+ FPR+ FNR)
Sensitivity = _TPR 00 (14)
(T PR+ FNR)
TPR FPR
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* o7, *

Fl Score _ 2 (Preczston Recall ) (16)

(Precision + Recall )

(17)

Scalability _ N Processedmages

TTnmI
Processing Time :TP process +T,, s 1, siprocess (18)
T
MCC =————=x100 (19)

« Detection Accuracy: Calculates the overall precision
of the model in classifying healthy and infected crop
regions. It reflects how well the hybrid model detects
true instances across the dataset.

« Sensitivity: Calculates the model’s ability to correctly
identify the diseased, pest-infected, or weed-affected
areas. Higher sensitivity ensures fewer missed detections
in critical crop conditions.

» F1-Score: Measures the combined precision and recall
scores to assess the balance between false positives
and false negatives.

o AUC-PR: Evaluates the trade-off between true positive
and false positive rates across various thresholds.

« Scalability: Calculates the model’s ability to maintain

performance across varying image resolutions and
crop types.

» Processing Time: Measures the time taken to analyze
each batch of images in real time. Efficient processing
supports field-level diagnostics with minimal latency.

Results and Discussions

This section presents a comprehensive analysis of the
experimental results attained from the proposed deep
segmentation model combining dual attention UNet and
Mask-RCNN. The performance of U-Net with Mask R-CNN
is evaluated using the Plant-Village dataset, focusing on
accurate detection of pests, diseases, and weeds in crop
imagery. To validate the model’s effectiveness, its outcomes
were compared with well-established architectures,
including dual Convolutional Neural Networks (D-CNN)
for baseline classification, Faster R-CNN for multi-object
detection, and CBAM (Convolutional Block Attention
Module)-enhanced networks for attention-guided feature
refinement. Existing and proposed models are trained
and tested under various conditions to ensure fairness in
evaluation. Metrics such as disease detection accuracy,
F1-score, AUC-PR, sensitivity, and processing Time were
used to assess the strengths and limitations of U-Net and
Mask R-CNN. The results highlight the robust accuracy of
the proposed model and demonstrate its robustness and
adaptability in real-world agricultural environments. The
findings are illustrated with values and graphs below from
Figures 5 to 10, where the x-axis shows the percentage value
and the y-axis shows the metrics of the model.

Detection Accuracy

The accuracy comparative analysis across multiple iterations
is illustrated in Table 4 and visualized in Figure 5, which
clearly demonstrates the superiority of the proposed
U-Net with Mask R-CNN architecture over baseline models.
While conventional CNN achieved only 71 to 73% accuracy
and Faster R-CNN improved moderately to 78 to 80%, the
inclusion of CBAM further enhanced detection accuracy to
a range of 84 to 87%. However, the proposed hybrid model
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significantly outperformed all others, reaching an initial
accuracy of 96.5% and maintaining 94.9% in subsequent
iterations. This consistency reflects the model’s robustnessin
learning intricate patterns and its effectiveness in handling
complex field data. The dual attention mechanism and
instance-aware segmentation proved crucial in reducing
misclassifications, especially in cases involving overlapping
anomalies and subtle disease symptoms, validating
the proposed model as a reliable solution for precision
agriculture diagnostics.

Sensitivity

The sensitivity analysis, presented in Table 5, highlights
the strength of the new model to accurately detect true
positive cases across various architectures. Traditional
CNN models delivered a baseline sensitivity between 76 to
78%, while Faster R-CNN offered modest gains, reaching
83% in later iterations. With the integration of CBAM,
sensitivity improved further, indicating better localization
of disease-specific features. However, the proposed U-Net
with Mask-RCNN model demonstrated the most significant
advancement, achieving 96.5% sensitivity in the first
iteration and maintaining 94.7% subsequently, which is
illustrated in Figure 6. This improvement is attributed to
the dual attention mechanism, which enhances spatial and
channel-level feature focus, and Mask-RCNN's instance-
aware detection capability. Together, they enable the model
to minimize false negatives, an essential aspect in early
disease and pest identification in order to ensure higher
reliability in real-time crop health monitoring under varied
environmental conditions.

F1-score

F1 score represents the harmonic mean of precision and recall
(P&R), which provides a balanced evaluation of detection,
and is shown in Table 5. The basic CNN model achieved
lower F1 scores between 75-78%, indicating limitations
in managing false positives and negatives. Faster R-CNN
showed improvement, yet struggled in overlapping region
detection. Incorporating CBAM boosted feature refinement,
raising scores to 86 to 88%. However, the proposed U-Net
with Mask-RCNN architecture achieved superior F1 scores

90

Accuracy (%)

Accuracy Comparison Across Models

Accuracy (It-1)
—=— Accuracy (It-N)

Sensitivity (%)

75

CNN Faster R-CNN CBAM U-Net with Mask-RCNN
Models

Figure 5: Detection accuracy
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Figure 6: Sensitivity
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Figure 7: F1 Score

Table 4: Detection accuracy analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask-RCNN (Proposed)
Accuracy (It-1) 71 78 84 96.5
Accuracy (It-N) 73 80 87 94.9

Table 5: Sensitivity analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask-RCNN (Proposed)
Sensitivity (It-1) 76 81 86 96.5
Sensitivity (It-N) 78 83 88 94.7
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Table 6: F1-score analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask-RCNN (Proposed)
F1 Score (It-1) 75 80 86 95.2
F1 Score (It-N) 78 82 88 94.6

of 95.2% in Iteration 1 and 94.6% in later runs, illustrated in
Figure 7. This is due to the dual-path learning that enhances
contextual understanding and instance segmentation. Such
precision is vital for accurately detecting pests and diseases
within cluttered agricultural environments.

AUC-PR Analysis

The AUC-PR analysis, outlined in Table 7, evaluates the
trade-off between P&R, particularly during the class
imbalance scenarios common in agricultural datasets. The
traditional CNN model, with a precision of 71% and recall
of 64%, resulted in a limited AUC-PR area due to high false
negatives. Faster R-CNN showed moderate improvement,
while CBAM provided enhanced precision (87%) through
spatial attention refinement. In contrast, the proposed U-Net
with Mask-RCNN architecture delivered a significantly higher
AUC-PR, backed by 96.5% precision and 97.4% recall shown
in Figure 8. This performance stems from its instance-aware
segmentation and dual attention stream, which ensure
high sensitivity while maintaining specificity. The results
confirm that the model distinguishes healthy and diseased
crop regions, even under noisy, real-world conditions in a
robust manner.

Scalability

Scalability analysis is showcased in Table 8, which emphasizes
the adaptability of detection models to varying dataset
volumes and real-time operational demands. The CNN and
Faster R-CNN models achieved scalability values ranging
from 76 to 83%, but their performance degraded when
subjected to large-scale inputs with high-resolution images.
CBAM improved scalability by introducing attention-driven
feature prioritization, reaching up to 91%. However, the
proposed U-Net with Mask-RCNN architecture surpassed
all with a scalability of 96.2% in initial iterations and 94.3%
in sustained loads shown in Figure 9. This enhancement
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Figure 8: AUC-PR
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Figure 9: Scalability

stems from its parallel processing capability, where Dual
Attention UNet handles semantic segmentation and Mask-
RCNN performs instance-level recognition independently.
The fused architecture maintains high throughput,
ensuring consistent accuracy and detection speed across
varying batch sizes, image dimensions, and deployment
environments in smart agricultural ecosystems.

Table 7: AUC-PR analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask-RCNN (Proposed)
Precision 71 82 87 96.5
Recall 64 74 83 97.4

Table 8: Scalability analysis
Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask-RCNN (Proposed)
Scalability (It-1) 76 81 89 96.2
Scalability (It-N) 77 83 91 94.3
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Table 8: Processing time analysis

Metrics / Models CNN Faster R-CNN

CBAM U-Net with Mask-RCNN (Proposed)

PT (It-1) 36 29
PT (It-N) 32 23

22 9
19 12

Processing Time Comparison Across Models

Processing Time (It-1)
35 —=— Processing Time (It-N)

N N w
S G S

Processing Time (ms)

-
G

CNN Faster R-CNN CBAM
Models

U-Net with Mask-RCNN
Figure 10: Processing time

Processing Time (Speed in ms)

The processing time (PT) analysis is shown in Table 9,
serves as a crucial indicator of real-time efficiency. The
conventional CNN model recorded the slowest inference
at 36 ms, while Faster R-CNN and CBAM improved response
rates to 29 ms and 22 ms, respectively. However, the
proposed U-Net with Mask-RCNN achieved the fastest
execution, requiring only 9 ms in initial iterations and 12
ms at scale, which is illustrated in Figure 10. This efficiency
is attributed to optimized backbone initialization and
concurrent processing of segmentation and detection
modules. The dual-path architecture facilitates faster
convergence and lightweight memory usage, ensuring real-
time responsiveness even in edge deployment. As a result,
the model demonstrates exceptional suitability for time-
critical agricultural monitoring scenarios, outperforming all
baselines in speed and scalability.

Conclusion
The proposed research presents a robust and hybrid deep
learning-based framework for accurate detection of pests,
diseases, and weeds in crops by integrating Dual Attention
U-Net and Mask-RCNN. The PLANT-VILLAGE dataset is used
to train, test and validate the model under diverse crop
scenarios, ensuring realistic testing conditions. The Dual
Attention U-Net module provided fine-grained semantic
segmentation by enhancing feature relevance through
spatial and channel attention mechanisms. In parallel, Mask-
RCNN facilitated instance-aware localization, capturing
overlapping and occluded objects with pixel-level precision.
This dual-branch architecture significantly improved the
overall detection and classification performance.

The performance evaluation yielded highly promising
results with detection accuracy reaching 96.5%, F1 Score

was 95.2%, AUC-PR attained 97.4%, and sensitivity achieved
96.5%, which reflects the ability of the model to balance true
positive rates with minimal false negatives. Additionally, the
model demonstrated superior scalability at 96.8%, effectively
handling large volumes of heterogeneous data, and an
optimized Processing Time of 12 seconds per batch, marking
a60to 70% speed improvement over conventional CNN and
Faster R-CNN baselines. Comparative analysis confirmed
substantial enhancements over prior models: CNN, Faster
R-CNN, and CBAM, across all metrics. The incorporation of
transfer learning enabled faster convergence and stable
training, while the attention modules guided the network’s
focus on critical regions. Furthermore, the fusion of semantic
and instance segmentation outputs ensured comprehensive
and context-aware crop health analysis. These innovations
collectively advance smart agriculture by offering a high-
performance, scalable, and interpretable detection system.

Despite its efficacy, the model may face limitations under
extremely noisy or blurred images captured in adverse
lighting conditions. Future work will involve extending the
framework to real-time drone feeds and integrating multi-
spectral data for deeper analysis of pest progression and
plant stress conditions.
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