
Abstract
Early and accurate identification of pests, diseases, and weeds in modern agriculture is crucial for sustainable crop management 
and yield optimization to increase productivity. This research proposes a hybrid deep segmentation framework that integrates dual 
attention UNet and Mask-RCNN methods to enhance the precision and reliability of plant disease detection under diverse environmental 
conditions. The core objective is to improve segmentation accuracy and object localization, particularly in complex field imagery with 
overlapping foliage, variable lighting, and background noise. The proposed architecture uses the plant-village dataset, which includes a 
diverse collection of annotated crop images representing multiple classes of pests, diseases, and weed species. The dual attention UNet 
emphasizes salient spatial and channel-wise features, enabling refined pixel-level segmentation of affected regions. This is followed by 
a Mask-RCNN module that performs instance-aware segmentation and bounding box localization, facilitating detailed identification 
of individual anomalies even in cluttered scenes. The framework is further enhanced through data augmentation and transfer learning 
strategies to support generalization across varying crop types. Experimental evaluation reveals that the proposed deep learning-based 
model achieves a detection accuracy (DA) of 96.5%, an F1-score of 95.2%, AUC-PR of 97.4%, sensitivity of 96.5%, scalability of 96.2% 
and a processing time (PT) of 12 seconds per batch, demonstrating both precision and efficiency. Moreover, the architecture shows a 
scalability of 96.8%, ensuring robustness in large-scale deployments. The comprehensive results are compared with baseline models 
such as CNN, faster R-CNN, and CBAM. The hybrid integration of instance-aware detection and attention-driven segmentation, explicitly 
designed for agricultural situations, shows the novelty, and the model improves detection quality by capturing fine-grained spatial 
characteristics and allowing for the thorough separation of overlapping anomalies compared to traditional CNN-YOLO pipelines. This 
model presents a reliable solution for real-time smart agriculture systems aimed at proactive crop health management. 
Keywords: Attention mechanism, Deep learning, Mask-RCNN, Plant-village dataset, Smart agriculture, U-Net model.
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Introduction
In recent years, the agricultural sector has grown dependent 
on intelligent technologies to manage crop health, 
productivity, and sustainability challenges. Among these 
challenges, the early and accurate detection of pests, 
diseases, and weeds remains a critical concern, especially in 
large-scale farming environments where manual inspection 
is labor-intensive and error-prone. As plant health anomalies 
significantly reduce yield and quality, precision-based 
detection mechanisms using deep learning have emerged 
as transformative tools in modern agricultural technology 
solutions. State-of-the-art models like deep learning-based 
dual-CNN and faster R-CNN have demonstrated significant 
promise in feature extraction and object detection tasks. 
Dual CNN architectures enhance representation learning 
by capturing complementary feature hierarchies through 
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parallel convolutional streams, while faster R-CNN offers 
robust region proposal and classification for real-time 
object localization. In parallel, the convolutional block 
attention module (DL-CBAM) has been integrated into 
deep architectures to refine spatial and channel-wise 
attention, which significantly improves the attention on 
critical regions in complex agricultural images. Despite these 
advancements, challenges include overlapping foliage, 
inconsistent lighting, visual similarity between classes, 
and dense background that continue to slow down the 
segmentation precision and overall detection reliability. This 
research gap underscores the need for a more integrated 
approach that identifies anomalies and segments them with 
high spatial resolution. 

Recent research highlights significant strides in 
agricultural image analysis through deep learning. A novel 
U-Net hybrid proposed for pest segmentation demonstrated 
improved boundary clarity and class separation in noisy 
images (N. Biradar et al., 2024). Image segmentation 
methods for crop health assessment continue to evolve, 
with attention mechanisms and multi-scale architectures 
improving pixel-level accuracy (L. Lei et al., 2024). Deep 
learning-driven weed–crop differentiation is also gaining 
traction for real-time field automation (H.-R. Qu et al., 2024). 
A comprehensive review emphasized the superiority of 
DL models over traditional techniques in identifying plant 
diseases and pest infestations across complex conditions (M. 
Shoaib et al., 2025). This research proposes a novel hybrid 
segmentation framework that synergistically combines Dual 
Attention UNet with Mask-RCNN to address these limitations. 
The dual attention UNet component focuses on extracting 
spatially enhanced feature maps by integrating channel and 
position attention, while Mask-RCNN performs instance-
aware segmentation and precise boundary localization. 
This dual-stage system is particularly suited for agricultural 
scenarios where multiple pests or diseases coexist within 
the same frame. The study targets the explicit detection 
under varying environmental conditions using the Plant-
Village dataset, a widely used benchmark for plant anomaly 
detection. By addressing the limitations of existing pipelines, 
this work contributes a highly scalable, interpretable, and 
accurate solution to advance smart agriculture toward real-
time, field-deployable systems. 

Problem Statement 
To develop a robust hybrid deep learning framework 
that integrates dual attention UNet and Mask-RCNN for 
accurately detecting and segmenting pests, diseases, 
and weeds in crops. The primary goal is to enhance pixel-
level segmentation accuracy and instance-level detection 
precision under real-world agricultural conditions, 
where image complexity, overlapping anomalies, and 
environmental variability often degrade conventional 
model performance. The proposed hybrid model employs 

the Dual Attention method to highlight spatial and relevant 
intrinsic features during segmentation, which improves the 
model’s focus on core affected regions. Simultaneously, 
using instance-aware segmentation, Mask-RCNN is used 
to localize and differentiate multiple anomalies within a 
single frame. This dual-stage architecture ensures that even 
subtle or co-occurring threats are effectively segmented 
and detected. The significant contributions include the 
design of an integrated attention-guided pipeline, using 
the Plant-Village dataset for diverse crop anomaly training, 
and optimizing processing time and scalability for field 
deployment. By combining the strengths of attention-
based feature enhancement with region-specific detection, 
the framework directly addresses existing challenges 
in misclassification, low boundary clarity, and poor 
generalization across crop varieties.

Objectives of the Proposed Work 
The main objective of this research is to introduce a robust & 
intelligent deep learning model for accurate detection and 
segmentation of pests, diseases, and weeds in crops under 
complex agricultural environments. The key objectives are 
i) integration of dual attention UNet for precise pixel-wise 
segmentation; ii) Mask-RCNN to achieve instance-level 
localization of multiple coexisting anomalies; iii) enhancing 
spatial attention mechanisms to improve boundary clarity 
and reduce misclassification; iv) to ensure high adaptability 
and scalability across varying crop types and environmental 
conditions using the Plant-Village dataset; v) to reduce 
system processing time and maintains high detection 
accuracy, making it highly suitable for real-time usage in 
precision farming; etc. To attain the objectives, the major 
steps are followed:
•	 Preprocessing: Curate and preprocess agricultural 

image data from the Plant-Village dataset.
•	 Segmentation: Train Dual Attention UNet for detailed 

spatial and channel-aware segmentation.
•	 Localization: Integrate Mask-RCNN for instance-aware 

object detection and boundary refinement.
•	 Data Augmentation:  Optimize the combined 

architecture using data augmentation and transfer 
learning.

•	 Evaluation: Evaluate model performance using 
accuracy, F1-score, sensitivity, AUC-PR, and scalability 
metrics.

Related Works 
A recent advance in deep learning has significantly 
transformed automated agricultural diagnostics, especially 
in pest, disease, and weed detection systems. In a 
comprehensive benchmarking study, a multi-stage Faster 
R-CNN-based framework was developed that accurately 
classified and detected individual weed species at the object 
level. The model highlighted the strength of region-based 
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CNNs in delineating multiple overlapping plant types in field 
environments (Hasan et al., 2023). Focusing on real-time 
edge computing, a lightweight YOLOv8 model is designed 
and enhanced with the multi-attention module (CBAM), 
enabling early cotton weed detection on edge devices. 
The integration of CBAM improved feature refinement 
and allowed the model to dynamically prioritize critical 
visual cues, enhancing detection under resource-limited 
conditions (Karim et al., 2024). In another study, a dual 
CNN framework was proposed to detect pests, diseases, 
and weeds. The D-CNN multi-path convolutional design 
facilitated enriched feature learning, which proved vital for 
improving crop yield in dense vegetation imagery (Meena 
et al., 2023). YOLOv5 was used to identify multiple weed 
growth stages in wheat fields. By leveraging stage-wise 
classification, the YOLOv5 system achieved high detection 
accuracy across phenological phases, reinforcing the 
applicability of deep detection models across dynamic 
agricultural timelines (Guzel et al., 2024). Small pest 
detection using deep learning object detection algorithms 
was explored, and the importance of detecting minor 
infestations before escalation was highlighted, using fine-
grained annotation strategies in real-time surveillance 
models (Khalid et al., 2023). An enhanced deep learning 
feature extraction model specifically optimized for pest and 
disease detection was introduced, where the model uses 
integrated visual feature amplification strategies to improve 
detection precision and reduce false alarms across varied 
backgrounds (Yuan et al., 2024). Table 1 shows the literature 
analysis of prevailing models.

Research Gap
Though deep learning applications have shown significant 
progress in precision agriculture, most existing models 
struggle with precise segmentation and detection when 
multiple anomalies, such as pests, diseases, and weeds, 
co-occur within a single image. Traditional CNN and YOLO-
based approaches often lack the spatial awareness to 
isolate overlapping regions or small-scale infestations in 
complex field environments. Furthermore, current models 
rarely integrate attention mechanisms and instance-level 
detection in a unified framework. Limited research on 
attention-guided segmentation specifically tuned for 
agricultural datasets like plant-village. This creates a clear 
gap for a robust, dual-stage architecture that enhances 
feature focus through attention and also segments and 
localizes anomalies with high precision. Addressing this gap 
improves early crop health diagnostics and enables smarter, 
real-time agricultural decision-making.

Proposed Methodology
The proposed framework combines dual attention U-Net 
with Mask‑RCNN (DA U-Net with Mask-RCNN) to deliver 
high‑precision detection and segmentation of crop pests, 
diseases, and weeds. First, we preprocess the plant-village 

dataset, which includes thousands of annotated images 
from multiple crop species under varied lighting and growth 
stages. Major features extracted include color texture, leaf 
shape patterns, disease lesion boundaries, and degree 
of infestation, providing rich representations for model 
learning. Dual attention U-Net processes these features 
through channel attention, highlighting critical spectral cues 
(e.g., discolorations), and spatial attention, sharpening focus 
on damaged areas. This attention‑guided path produces 
refined pixel‑level segmentation masks, delineating 
anomalies amidst overlapping foliage. These segmentation 
outputs are then fed into Mask‑RCNN, which performs 
instance‑level detection, generating bounding boxes and 
per-instance masks for individual pests, diseases, or weeds. 
This dual-stage approach ensures holistic segmentation and 
precise object localization within cluttered scenes. Applied 
data augmentation (rotations, color shifts) and transfer 
learning using ImageNet‑pretrained backbones to boost 
accuracy further. This integrated deep learning model is 
fully optimized, which proves segmentation accuracy, box 
regression, mask quality, and attention consistency. This dual 
attention U-Net with Mask-RCNN model leads to robust, 
interpretable, and scalable detection performance across 
diverse crop conditions. 

Materials and Methods for Implementation
To assess the effectiveness of the proposed U-Net 
with Mask-RCNN dual attention model, a structured 
implementation approach was adopted, combining multi-
task deep learning models, standardized datasets, with 
robust training practices. The focus was on achieving 
high accuracy in detecting pests, diseases, and weeds 
under diverse agricultural conditions. This section outlines 
the detailed materials and methods, such as the dataset 
employed, the model architecture, implementation tools, 
training configurations, and optimization strategies used 
throughout the development process. Specific attention 
was given to data preparation, model scalability, and 
generalization to ensure the system performs reliably in 
real-world applications.
•	 Dataset Used: The Plant-Village dataset was used, 

containing annotated images of healthy and affected 
crop leaves with pests, diseases, and weeds.

•	 Framework: A hybrid architecture was developed by 
integrating Dual Attention UNet for segmentation and 
Mask-RCNN for instance-level detection.

•	 Implementation Tool: Python, with TensorFlow and 
MATLAB, is used for implementation, computation and 
comparative analysis.

•	 Training and Testing Ratio: The dataset is split in a 
ratio of 80% training and 20% testing to ensure proper 
evaluation of learning effectiveness.

•	 Data Augmentation: Adequate techniques such as 
rotation, flipping, color jittering, and random cropping 
were applied to improve model generalization.
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Table 1: Literature analysis of specific state of art object detection methods

Authors Methods Adopted Merits Limitations

Buckner et al. (2021)
High-throughput image 
segmentation with machine 
learning

Scalable across multi-resolution plant 
imaging; cross-scale adaptability

Less optimized for real-time 
performance; lacks fine-grain object 
separation

Demilie (2024) Comparative study of classical ML 
vs. DL techniques

Provides statistical validation of 
model performances

Limited use of advanced 
segmentation; lacks real-time 
experimentation

Devi et al. (2024) GAN-based secure data routing 
for IoT

Introduces bio-inspired robustness 
and data loss minimization

Focuses on data transmission; where 
image classification is not done

Dinesh & Lakshmanan 
(2025)

Multiclass semantic segmentation 
on citrus leaves

Identifies severity levels along with 
disease classification

Dataset focused on citrus plants only; 
model generalization not addressed

Dolatabadian et al. 
(2025)

Image-based disease detection 
using ML classifiers

Large-scale dataset and robust 
classification strategies

Less use of attention-based deep 
learning models

Eldho & Nithyanandh 
(2024)

3D CNN model on CT-DICOM 
images

Accurate volumetric analysis; robust 
segmentation for medical datasets

Deep object detection is don, 
but lacks highlighted masking for 
classifictaion

Faisal et al. (2025) Customized deep learning for 
cotton disease detection

High precision detection under 
diverse environmental settings

Model performance in multiclass 
settings is not validated

Hasan et al. (2023) Extended KDE clustering for 
coffee leaf diseases 

Novel unsupervised learning for 
disease classification

Limited interpretability in 
overlapping disease classes

Kim & Park (2022) MTS-CNN (multi-task semantic 
CNN)

Efficient in distinguishing weeds and 
crops simultaneously

Higher computational complexity in 
dense scenarios

Liu & Wang (2021) Review of DL methods for plant 
disease detection

Broad coverage of DL architectures 
and datasets

Deep segmentation and masking of 
localized features 

Nithyanandh (2025)
YOLOv8 with Deep CNN on 
soft computing-based object 
detection

High speed detection with efficient 
feature mapping

Focused more on system design than 
object detection and deployment 
results

Nithyanandh et al. 
(2023)

Firefly algorithm based EAP-IFBA 
with adaptive sleep scheduling

Energy-efficient and secure IoT-based 
communication

Focused more on IoT image-based 
agricultural detection

Prabhu et al. (2025) Bio-inspired secure routing in 6G 
wireless agriculture systems

Enhanced authentication and energy 
optimization

Sensor optimization is focused, lacks 
deep segmentation and masking

Selvam & Joy (2024)
AEN + Mask R-CNN with multi-
variable feature selection (custom 
PL dataset)

Improved lesion detection with 
precise segmentation

Lacks multiclass scalability for large 
datasets

Silva et al. (2024) Weed segmentation using UAV 
images and deep learning

Real-time UAV-based monitoring; 
efficient for large field areas

Weather and drone limitations affect 
consistency

Singh et al. (2020)
Plant-Village dataset creation 
for plant disease detection 
benchmarking

Open-source benchmark with class 
variety and annotation

Imbalanced class distribution in 
dataset

Upadhyay et al. (2025) Review on DL models, datasets 
and trends in precision agriculture

Summarizes models with detailed 
insights on future directions

Scalability issues on multiclass image 
dataset 

Arularasan et al. 
(2024)

Deep learning-based sign 
language recognition with visual 
feature extraction

Effective gesture modeling with 
deep architecture integration

Object detection with visualized 
feature extraction is focused, lacks 
deep spot localization

•	 Transfer Learning: Pretrained weights (ImageNet) were 
used to initialize backbone layers for faster convergence 
and improved accuracy.

•	 Training Configuration: Model trained for 120 epochs 
using Adam optimizer, monitored with performance 
metrics like F1-Score, Detection Speed, and AUC-PR. 

PLANT-VILLAGE Dataset Attainment and 
Preprocessing 
The proposed U-Net with Mask-RCNN model uses the 
Plant-Village dataset, which was meticulously built to 
support realistic disease detection of pests and weeds 
in crops. It contains 54,303 images across 38 categories, 
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Table 2: Shows the Plant-Village Crop Species and Disease Classes to spot the classification

Plant species (PVD) Disease classes (including Healthy)

Apple Apple-Scab, Apple Black-Rot, Apple Cedar-Rust, Healthy

Blueberry Blueberry-Healthy, Blueberry-Disease(s)

Cherry Cherry Powdery Mildew, Healthy

Corn Corn Cercospora, Grey Leaf Spot, Healthy

Grape Grape Black Rot, Grape Esca (Black Measles), Healthy

Orange Orange Haunglongbing (Citrus Greening), Healthy

Peach Peach Bacterial Spot, Healthy

Pepper Pepper Bacterial Spot, Healthy

Potato Potato Early Blight, Late Blight, Healthy

Raspberry Raspberry Healthy

Soybean Soybean Healthy

Squash Squash Powdery Mildew, Healthy

Strawberry Strawberry Leaf Scorch, Healthy

Tomato Tomato Bacterial Spot, Early Blight, Late Blight, Leaf Mold, Septoria Leaf Spot, Spider Mites, Target Spot, Mosaic 
Virus, Healthy

(Dataset Source: https://paperswithcode.com/dataset/plantvillage)

with healthy and diseased leaves from 14 crop species. To 
ensure robustness, we adopted the TensorFlow Datasets 
version in this research, which maintains consistent image 
quality and standardized labeling. Before the model 
training, images are resized to 224 × 224 pixels to align with 
standard CNN input dimensions. Pixel values were then 
normalized per channel using the formula. norm

x µx
σ
−

= , where 
 µ  and σ  are the mean and standard deviation, which are 

calculated over the training set. This normalization ensures 
stable convergence across varying lighting conditions. 
Additionally, we compared RGB, HSV, and lab color spaces 
to emphasize contrasts between healthy tissue and lesions. 
Augmentation techniques such as random rotation (±20°), 
horizontal and vertical imaging flips, brightness & contrast 
adjustments, and Gaussian noise are used to enhance 
training variety. This process expanded the dataset by 5× 
and improved generalization to real-world scenarios. Self-
contained class balancing ensured that all 38 categories 
were represented equitably during batch training. 
Bounding box annotations were derived from image-level 
labels and used only for diagnostic evaluation, reserving 
mask-based labels for segmentation tasks. Altogether, 
this preprocessing pipeline standardized inputs, mitigated 
illumination bias, and enhanced feature separation, setting 
the stage for effective attention-based segmentation and 
instance detection. Table 2 shows the Plant-Village Crop 
Species and Disease Classes to spot the classification.

To ensure balanced learning and reliable validation, 
the complete Plant-Village dataset is split into an 80:20 
ratio, where 80% is used for training and 20% reserved for 
testing and validation purposes. In order to preserve class 

distribution across both sets stratified sampling method 
was applied to ensure that the minority classes receive 
sufficient representation during learning, while the model’s 
generalization ability is assessed on hidden samples, which 
reflects the real-world variability and intra-class differences. 

Key features include leaf texture patterns, which 
help distinguish between healthy and infected surfaces, 
and color distortions, such as yellowing, browning, or 
lesion-specific discolorations that signal early disease 
onset. Edge irregularities and shape deformations were 
used to detect fungal spread and pest damage. Spatial 
features such as i) spot distribution, ii) vein anomalies, 
and iii) patchy growth patterns provided additional 
context for accurate segmentation. Moreover, attention 
mechanisms emphasized channel-level spectral variations 
and spatial focus regions, improving the model’s ability to 
isolate infected zones. These multi-dimensional features 
collectively enabled the Dual Attention UNet to learn 
nuanced patterns. Simultaneously, Mask-RCNN accurately 
localized and differentiated instances across co-occurring 
conditions, supporting robust detection under diverse 
agricultural settings.

Data Augmentation and Feature Enhancement
To improve the generalization and robustness of the 
proposed detection model, a comprehensive data 
augmentation and feature enhancement strategy was 
employed. Augmentation plays a critical role in mitigating 
overfitting, especially when dealing with class imbalance 
and limited variability in real-world agricultural datasets 
like Plant-Village. Key augmentation techniques included 
i) random rotation, ii) flipping, iii) zooming, iv) brightness 
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variation, and v) Gaussian noise injection. These operations 
simulate real-time variations in orientation, lighting, 
and camera focus, improving the ability of the model to 
recognize anomalies in indeterminate conditions. For 
instance, rotation was applied using the equation below,

( ) ( )1 1 1 1 1 1, cos  sin , sin  cos  I x y I x y x yθ θ θ θ θ= − +                	 (1)

where θ  is the rotation angle in degrees. Brightness 
adjustment was modeled using,

( ) ( )1 1 1 1,   . ,bI x y I x yα=                             	  (2)

where α  is the brightness scaling factor. Gaussian noise 
( )2 0, N σ  was added to simulate environmental noise. To 

further enhance feature extraction, channel normalization 
was performed using z-score scaling which is expressed as, 

1
1norm

x µx
σ
−

=                             	 		  (3)

where, Here,    µandσ  denote the mean and standard 
deviation across training images, ensuring uniform intensity 
scaling. These augmented inputs enriched the feature space 
and reduced bias toward dominant conditions. Enhanced 
features such as lesion borders, texture irregularities, and 
spectral anomalies are highlighted using Dual Attention 
mechanisms, which allows the network to focus on both 
spatial detects and color-based indications. This finite 
enhancement pipeline ensured better convergence 
and improved both segmentation fidelity and object 
localization, especially in cluttered or low-contrast crop 
imagery.

Dual Attention UNet-Based Semantic Segmentation 
The proposed segmentation framework integrates the 
conventional U-Net structure with a multi-task dual attention 
mechanism, which comprises both channel attention (CA) 
and spatial attention (SA) modules. This design addresses the 
need for precise localization of disease regions and subtle 
textures associated with plant abnormalities. 

Encoder-Decoder Architecture
The backbone of the network is a U-Net that follows a 
symmetric encoder-decoder path, where the encoder 
extracts hierarchical features through convolution 
and pooling layers and the decoder reconstructs the 
segmentation map using transposed convolutions and skip 
connections for spatial detail retention. 

Channel Attention Module (CA)
Channel attention helps the U-Net model to prioritize and 
emphasize the meaningful feature maps by applying the 
global pooling operations to generate descriptors, which 
is expressed in the equation below. 

( ) ( ) ,  Avg maxF AvgPool F F MaxPool F= =                 	  (4)

These features are passed through a shared MLP to produce 
weights, such as,

( )( ) ( )( )( )1 0 1 0 ( (  )  )  c avg maxM W W F W W Fσ δ δ= +                             (5)

Where,  δ is ReLU, σ  is sigmoid, and 0 1, W W  are trainable 
weights. The input feature   F is rescaled using . cF M F′ =  
which allows the network to weigh more informative 
channels while suppressing irrelevant ones.

Spatial Attention Module (SA)
While CA learns “what,” the SA focuses on “where” the 
disease or pest is spatially located, a channel-wise pooling 
is first applied.

( ) ( )( )( )7 7 ;   x
spatialF f AvgPool F MaxPool Fσ ′ ′ =  

                            (6)

Where, the feature map is refined as . spatialF F F′=′′  allows 
the network to assign attention to specific spatial zones, 
typically leaf edges, lesions, or texture-deformed regions 
shown in Figure 1.

Output Prediction
The final refined map F ′′  is then passed through a sigmoid-
activated convolution to generate a binary or multiclass 
segmentation mask. The output highlights infected regions, 
separated from healthy backgrounds with high spatial 
resolution, which is shown in Figure 1. 

Optimization Strategy
The total loss combines binary cross-entropy and Dice loss 
which is mathematically expressed below. 

ë .   total BCE DiceL L L= +                             (7)

This process balances region-wise classification with shape-
aware overlap measurement. The Dual Attention U-Net 
effectively enhances leaf region segmentation by explicitly 
learning both feature importance and spatial relevance. This 
proposed U-Net mechanism improves class separability 
and highly supports robust localization of disease spread 
patterns in real-world field conditions.

Figure 1: Dual attention UNet-based semantic segmentation
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Instance-Aware Detection Using Mask-RCNN
Mask-RCNN is an advanced object detection model 
designed to perform instance-aware segmentation, which 
allows for the precise detection of each object instance in a 
PLANT-VILLAGE image along with its class and shape. Unlike 
semantic segmentation, which labels all pixels of the same 
category identically, instance segmentation with Mask-
RCNN distinguishes and segments overlapping objects 
individually, which is essential in agricultural scenarios with 
clustered leaves or coexisting pests and diseases. 

The model begins with a convolutional backbone to 
extract multiple feature maps from the input dataset image 
shown in Figure 2. These features are forwarded to a Region 
Proposal Network (RPN) that predicts the object regions 
of interest (RoIs). The RPN optimizes a binary classification 
loss ​ clsL  and a bounding box regression loss regL  ​which is 
expressed in the equation below. 

ëRPN cls regL L L= + 				    (8)
As a next process, the proposed RoIs are passed through 
RoI-Align, which eliminates misalignment by preserving 
exact spatial locations through bilinear interpolation. The 
extracted regions are then sent to two branches, one for 
multi-classification and bounding box refinement, and 
another for binary mask prediction. The mask branch 
outputs a binary segmentation map M  for each RoI. The 
total loss function is calculated using, 

cls bbox maskL L L L= + + 				    (9)

where,  clsL is the multiclass classification loss, bboxL ​ is the 
bounding box regression loss and  maskL

 is the pixel-wise 
binary cross-entropy (BCE) for mask prediction. The final 
output includes class labels, refined bounding boxes, 
and segmentation masks, providing a complete visual 
understanding of the affected crop regions. This makes 
Mask-RCNN especially valuable for detecting multiple 
co-occurring anomalies such as pest clusters and leaf 
infections in precision agriculture. 

Integration and Model Optimization Strategy
The proposed hybrid model is designed to integrate the 
strengths of dual attention UNet and Mask R-CNN into 
a unified pipeline, ensuring both pixel-level semantic 
segmentation and instance-level object detection. To 
facilitate seamless integration, the segmented output of 
the Dual Attention UNet is fused with the feature map 
backbone of the Mask R-CNN. This enables contextual 
attention-weighted features to guide instance proposals 
more accurately. The attention-enhanced feature map F ′′   
from the U-Net is passed into the RPN of Mask R-CNN. RoI-
Align ensures feature alignment, followed by classification 
and mask prediction heads. A weighted fusion strategy 
is applied to combine outputs of both branches which is 
mathematically expressed as, 

( ) 1fused UNet RPNF F Fα α= + − 			   (10)

where, [ ] € 0,1α  controls the contribution from each module. 
This dynamic fusion enhances robustness under varying 
illumination and leaf texture complexities. Additionally, early 
stopping and learning rate falloff techniques are integrated 
to prevent overfitting and accelerate convergence using 

0
1 .

1t t
η η

γ
=

+  , where 0η ​ is the early learning rate and t  is the 
epoch index. Together, this hybrid optimization strategy 
enhances model precision, stability, and adaptability for 
real-time agricultural scenarios.

Transfer Learning for Backbone Initialization & 
Convergence Enhancement
To accelerate training and to enhance model generalization, 
the proposed hybrid architecture employs a transfer 
learning method by initializing its backbone with pretrained 
weights from large-scale datasets. This dynamic approach 
utilizes rich low-level and mid-level features, such as fine 
edges, multiple textures, and intrinsic patterns, which deep 
convolutional networks have already learned. By transferring 
these representations into the agricultural context, the 
model converges faster and performs better with fewer 
samples. The feature extraction F  is initialized as,

( ) ( )0; pretrainedF x ConvNet xθ = 			   (11)

where, 0θ  is the pretrained weight, x  ss the input image. 
Fine-tuning is then applied to adjust the weights θ  with 
respect to the new dataset .plantD

( )* arg min ( ; )plantL Dθ θ θ= 			   (12)

Where, this optimization minimizes the task-specific loss L  
using gradient descent, enabling the U-Net model to adapt 
to significant plant-specific anomalies. Transfer learning 
helps to reduce training time and avoids overfitting by 
providing a stable starting point. It significantly benefits Figure 2: Mask R-CNN structure and stages
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deep models like ResNet-based UNet and Mask-RCNN, 
allowing efficient detection of subtle diseases and leaf-level 
variations in agricultural datasets. 

Real-Time Implementation 
The proposed hybrid deep learning framework was 
deployed in real-time to validate its practical applicability in 
field-based crop monitoring systems. The complete pipeline, 
from image acquisition to segmentation and instance 
detection, was implemented on an edge-compatible 
workstation with a GPU. High-resolution images of leaves 
were captured using mobile or drone-based cameras and 
directly fed into the integrated Dual Attention UNet + 
Mask-RCNN model. Upon input, the dual attention UNet 
performed fine-grained segmentation to highlight diseased 
or pest-affected areas. These were then passed to the Mask-
RCNN for object-wise localization and classification. Figure 3 
shows the dual stream segmentation architecture with 
the complete process of the attention UNet + Mask-RCNN 
model. 

Real time example
For instance, when a farmer scans a tomato plant using a 
smartphone, the system detects early blight regions, isolates 
them via pixel-level segmentation, and draws bounding 
boxes around each affected area. It labels the disease type 
and severity within seconds, enabling timely intervention. 
The average processing time per image was approximately 
12 seconds per batch, ensuring feasibility in real-time 
decision-making. The model was optimized for lightweight 
inference without compromising accuracy to maintain 
responsiveness. Results, including annotated masks and 
class labels, were rendered through a user-friendly interface. 
This end-to-end system enables precision agriculture by 

facilitating real-time detection, reducing manual labor, and 
promoting proactive crop health management.

Process of U-Net with Mask‑RCNN
Input: PLANT-VILLAGE Dataset (image and label 
directories)

1.	 Begin: 
2.	 Load the HD Images from PLANT-VILLAGE dataset 

.data plantvillage
3.	 Perform pre-processing  

	 Resize all images to uniform resolution (e.g., 
256×256).  
	 Apply RGB to grayscale conversion (if needed). 
	 Normalize image pixel values to range [0,1]. 
	 Perform image denoising using median or 
Gaussian filters. 
	 Augment data using flipping, rotation, zoom, 
and contrast adjustments. 
	 Split the dataset into training set (80%) and 
testing set (20%).

4.	 Dual Attention UNet Configuration 
     Construct UNet encoder with 4 levels of convo-
lution + ReLU + max pooling.
     Integrate Channel Attention (CA) after each 
encoder block:
     Compute global average pooling across chan-
nels.
     Use sigmoid activation to weight each channel 
adaptively.
     Integrate Spatial Attention (SA) in decoder 
blocks:
     Apply convolutional filtering to spatial dimen-
sions.
     Multiply attention mask with decoder features.

Figure 3: U-Net with mask‑RCNN architecture diagram
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     Apply bottleneck layer with dense contextual 
encoding.
     Construct decoder: up-sample, concatenate 
skip connections, apply attention.
     Add final segmentation head with sigmoid 
output.
     Train Dual Attention UNet on semantic masks 
(disease/pest/weed).

5.	 Mask-RCNN Configuration
Load ResNet50 as the backbone CNN.
Generate region proposals using Region Proposal 
Network (RPN).
Apply ROI-Align to align feature maps.
Feed aligned ROIs to:
Classifier head (for object class prediction).
	 Bounding box regressor (for localization).
	 Mask head (for pixel-level binary mask 
generation).
Train Mask-RCNN using instance-annotated 
Plant-Village samples.

6.	 Feature Fusion Layer
Fuse Dual Attention UNet and Mask-RCNN 
outputs:
Concatenate segmentation feature maps with 
Mask-RCNN ROI features.
Apply a convolutional fusion layer.
Normalize and align features spatially.

7.	 Classification Layer
Pass fused features into dense fully connected 
layer.
Apply Softmax to classify instances into:
Pest (Aphid, Thrips, etc.) , Disease (Blight, Rust, 
etc.) , Weed (Foxtail, Crabgrass, etc.)

8.	 Output Generation
Generate pixel-level semantic segmentation map.
Overlay instance masks with unique object IDs.
Draw bounding boxes around each detected 
object.
Assign class label with confidence score.
Visualize detection with annotated color mask + 
label.
Create heatmap for severity and spread visualiza-
tion.
Export results to GUI dashboard or .png/.mat 
files.

9.	 End 

Confusion Matrix 
The 2x2 confusion matrix for the proposed hybrid 
model combining Dual Attention UNet and Mask-RCNN 
demonstrates highly effective classification across three 
iterative runs on the Plant-Village dataset. As a sample, the 
matrix is calculated for 3 iterations. For each iteration, the 
matrix quantifies the model’s ability to correctly distinguish 
between healthy and diseased crop samples based on 

deep segmentation and instance-aware learning. Each 
iteration was executed using a balanced split (80:20) and 
fine-tuned. The results reflect consistently high precision 
and minimal variance across multiple test cycles. In Iteration 
3, which yielded the best performance, the model correctly 
classified 475 healthy samples (True Negatives) and 488 
diseased samples (True Positives). Only 25 healthy instances 
were misclassified as diseased (False Positives), while 12 
diseased samples were incorrectly identified as healthy 
(False Negatives). These results align with the obtained 
performance metrics: Detection Accuracy (DA) of 96.5%, F1 
Score of 95.2%, AUC-PR of 97.4%, and Sensitivity of 96.5%. 
Moreover, the Processing Time (PT) was observed to be 
approximately 12 seconds per batch, supporting its viability 
for near real-time deployment, which is shown in Figure 4. 

The confusion matrix validates the model’s robustness 
in detecting subtle variations across complex agricultural 
imagery, which is shown in Table 3. The high true positive 
rate reflects the precision of the Dual Attention UNet in 
capturing semantic distinctions, while the Mask-RCNN 
complements it by effectively isolating and labeling 
individual infected regions. This matrix also underscores 
the system’s scalability. Minimal variance between iterations 
suggests consistency in learning across cross-validation 
folds. Thus, the integration of dual attention mechanisms 
and instance-based segmentation not only enhances 
classification accuracy but also ensures generalization 
across diverse field conditions and plant species. The 
matrix-driven analysis highlights the strategic synergy of 
attention-enhanced deep learning models with real-time 
inference capacity, which makes a reliable tool for precision 
agriculture.

Performance Evaluation of U-Net with Mask R-CNN
To assess the consistency and efficiency of the proposed 
deep learning-based hybrid model, multiple performance 
metrics were used, such as detection accuracy, F1-score, 
AUC-PR, sensitivity, scalability and precision time. The 
complete model is tested using MATLAB 2023a with support 
from the Deep Learning Toolbox and GPU-based parallel 
processing. These metrics were chosen to assess both the 
classification strength and the segmentation precision of the 
model. For a full boxed assessment, the performance of the 
proposed model is compared against baseline models such 
as CNN, Faster R-CNN and CBAM. The models underwent 
thorough training and validation on the same preprocessed 
dataset to ensure smooth and fairness comparison. The dual-

Table 3: Confusion matrix of sample 3 iterations

Iteration TP TN FP FN

Iteration 1 485 480 20 15

Iteration 2 482 470 30 18

Iteration 3 488 475 25 12
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stream design of the proposed approach was specifically 
assessed for its ability to segment complex disease patterns 
and detect subtle pest occurrences. Evaluation also 
considered computational efficiency and inference time, 
particularly in real-time scenarios. The comparative analysis 
helped validate the robustness and practical deployability 
of the proposed model in agricultural environments. 
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•	 Detection Accuracy: Calculates the overall precision 
of the model in classifying healthy and infected crop 
regions. It reflects how well the hybrid model detects 
true instances across the dataset.

•	 Sensitivity: Calculates the model’s ability to correctly 
identify the diseased, pest-infected, or weed-affected 
areas. Higher sensitivity ensures fewer missed detections 
in critical crop conditions.

•	 F1-Score: Measures the combined precision and recall 
scores to assess the balance between false positives 
and false negatives.

•	 AUC-PR: Evaluates the trade-off between true positive 
and false positive rates across various thresholds.

•	 Scalability: Calculates the model’s ability to maintain 

performance across varying image resolutions and 
crop types.

•	 Processing Time: Measures the time taken to analyze 
each batch of images in real time. Efficient processing 
supports field-level diagnostics with minimal latency.

Results and Discussions
This section presents a comprehensive analysis of the 
experimental results attained from the proposed deep 
segmentation model combining dual attention UNet and 
Mask-RCNN. The performance of U-Net with Mask R-CNN 
is evaluated using the Plant-Village dataset, focusing on 
accurate detection of pests, diseases, and weeds in crop 
imagery. To validate the model’s effectiveness, its outcomes 
were compared with well-established architectures, 
including dual Convolutional Neural Networks (D-CNN) 
for baseline classification, Faster R-CNN for multi-object 
detection, and CBAM (Convolutional Block Attention 
Module)-enhanced networks for attention-guided feature 
refinement. Existing and proposed models are trained 
and tested under various conditions to ensure fairness in 
evaluation. Metrics such as disease detection accuracy, 
F1-score, AUC-PR, sensitivity, and processing Time were 
used to assess the strengths and limitations of U-Net and 
Mask R-CNN. The results highlight the robust accuracy of 
the proposed model and demonstrate its robustness and 
adaptability in real-world agricultural environments. The 
findings are illustrated with values and graphs below from 
Figures 5 to 10, where the x-axis shows the percentage value 
and the y-axis shows the metrics of the model. 

Detection Accuracy 
The accuracy comparative analysis across multiple iterations 
is illustrated in Table 4 and visualized in Figure 5, which 
clearly demonstrates the superiority of the proposed 
U-Net with Mask R-CNN architecture over baseline models. 
While conventional CNN achieved only 71 to 73% accuracy 
and Faster R-CNN improved moderately to 78 to 80%, the 
inclusion of CBAM further enhanced detection accuracy to 
a range of 84 to 87%. However, the proposed hybrid model 

Figure 4: Confusion matrix of 3-class classification results
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significantly outperformed all others, reaching an initial 
accuracy of 96.5% and maintaining 94.9% in subsequent 
iterations. This consistency reflects the model’s robustness in 
learning intricate patterns and its effectiveness in handling 
complex field data. The dual attention mechanism and 
instance-aware segmentation proved crucial in reducing 
misclassifications, especially in cases involving overlapping 
anomalies and subtle disease symptoms, validating 
the proposed model as a reliable solution for precision 
agriculture diagnostics.

Sensitivity
The sensitivity analysis, presented in Table 5, highlights 
the strength of the new model to accurately detect true 
positive cases across various architectures. Traditional 
CNN models delivered a baseline sensitivity between 76 to 
78%, while Faster R-CNN offered modest gains, reaching 
83% in later iterations. With the integration of CBAM, 
sensitivity improved further, indicating better localization 
of disease-specific features. However, the proposed U-Net 
with Mask-RCNN model demonstrated the most significant 
advancement, achieving 96.5% sensitivity in the first 
iteration and maintaining 94.7% subsequently, which is 
illustrated in Figure 6. This improvement is attributed to 
the dual attention mechanism, which enhances spatial and 
channel-level feature focus, and Mask-RCNN’s instance-
aware detection capability. Together, they enable the model 
to minimize false negatives, an essential aspect in early 
disease and pest identification in order to ensure higher 
reliability in real-time crop health monitoring under varied 
environmental conditions.

F1-score 
F1 score represents the harmonic mean of precision and recall 
(P&R), which provides a balanced evaluation of detection, 
and is shown in Table 5. The basic CNN model achieved 
lower F1 scores between 75–78%, indicating limitations 
in managing false positives and negatives. Faster R-CNN 
showed improvement, yet struggled in overlapping region 
detection. Incorporating CBAM boosted feature refinement, 
raising scores to 86 to 88%. However, the proposed U-Net 
with Mask-RCNN architecture achieved superior F1 scores 

Table 4: Detection accuracy analysis 

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask‑RCNN (Proposed) 

Accuracy (It-1) 71 78 84 96.5

Accuracy (It-N) 73 80 87 94.9

Table 5: Sensitivity analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask‑RCNN (Proposed) 

Sensitivity (It-1) 76 81 86 96.5

Sensitivity (It-N) 78 83 88 94.7

Figure 5: Detection accuracy

Figure 6: Sensitivity 

Figure 7: F1 Score  
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Table 6: F1-score analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask‑RCNN (Proposed) 

F1 Score (It-1) 75 80 86 95.2

F1 Score (It-N) 78 82 88 94.6

of 95.2% in Iteration 1 and 94.6% in later runs, illustrated in 
Figure 7. This is due to the dual-path learning that enhances 
contextual understanding and instance segmentation. Such 
precision is vital for accurately detecting pests and diseases 
within cluttered agricultural environments.

AUC-PR Analysis 
The AUC-PR analysis, outlined in Table 7, evaluates the 
trade-off between P&R, particularly during the class 
imbalance scenarios common in agricultural datasets. The 
traditional CNN model, with a precision of 71% and recall 
of 64%, resulted in a limited AUC-PR area due to high false 
negatives. Faster R-CNN showed moderate improvement, 
while CBAM provided enhanced precision (87%) through 
spatial attention refinement. In contrast, the proposed U-Net 
with Mask-RCNN architecture delivered a significantly higher 
AUC-PR, backed by 96.5% precision and 97.4% recall shown 
in Figure 8. This performance stems from its instance-aware 
segmentation and dual attention stream, which ensure 
high sensitivity while maintaining specificity. The results 
confirm that the model distinguishes healthy and diseased 
crop regions, even under noisy, real-world conditions in a 
robust manner. 

Scalability 
Scalability analysis is showcased in Table 8, which emphasizes 
the adaptability of detection models to varying dataset 
volumes and real-time operational demands. The CNN and 
Faster R-CNN models achieved scalability values ranging 
from 76 to 83%, but their performance degraded when 
subjected to large-scale inputs with high-resolution images. 
CBAM improved scalability by introducing attention-driven 
feature prioritization, reaching up to 91%. However, the 
proposed U-Net with Mask-RCNN architecture surpassed 
all with a scalability of 96.2% in initial iterations and 94.3% 
in sustained loads shown in Figure 9. This enhancement 

Table 7: AUC-PR analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask‑RCNN (Proposed) 

Precision 71 82 87 96.5

Recall 64 74 83 97.4

Figure 8: AUC-PR

Table 8: Scalability analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask‑RCNN (Proposed)

Scalability (It-1) 76 81 89 96.2

Scalability (It-N) 77 83 91 94.3

Figure 9: Scalability

stems from its parallel processing capability, where Dual 
Attention UNet handles semantic segmentation and Mask-
RCNN performs instance-level recognition independently. 
The fused architecture maintains high throughput, 
ensuring consistent accuracy and detection speed across 
varying batch sizes, image dimensions, and deployment 
environments in smart agricultural ecosystems.
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Table 8: Processing time analysis

Metrics / Models CNN Faster R-CNN CBAM U-Net with Mask‑RCNN (Proposed) 

PT (It-1) 36 29 22 9

PT (It-N) 32 23 19 12

Figure 10: Processing time

Processing Time (Speed in ms)
The processing time (PT) analysis is shown in Table 9, 
serves as a crucial indicator of real-time efficiency. The 
conventional CNN model recorded the slowest inference 
at 36 ms, while Faster R-CNN and CBAM improved response 
rates to 29 ms and 22 ms, respectively. However, the 
proposed U-Net with Mask-RCNN achieved the fastest 
execution, requiring only 9 ms in initial iterations and 12 
ms at scale, which is illustrated in Figure 10. This efficiency 
is attributed to optimized backbone initialization and 
concurrent processing of segmentation and detection 
modules. The dual-path architecture facilitates faster 
convergence and lightweight memory usage, ensuring real-
time responsiveness even in edge deployment. As a result, 
the model demonstrates exceptional suitability for time-
critical agricultural monitoring scenarios, outperforming all 
baselines in speed and scalability.

Conclusion
The proposed research presents a robust and hybrid deep 
learning-based framework for accurate detection of pests, 
diseases, and weeds in crops by integrating Dual Attention 
U-Net and Mask-RCNN. The PLANT-VILLAGE dataset is used 
to train, test and validate the model under diverse crop 
scenarios, ensuring realistic testing conditions. The Dual 
Attention U-Net module provided fine-grained semantic 
segmentation by enhancing feature relevance through 
spatial and channel attention mechanisms. In parallel, Mask-
RCNN facilitated instance-aware localization, capturing 
overlapping and occluded objects with pixel-level precision. 
This dual-branch architecture significantly improved the 
overall detection and classification performance.

The performance evaluation yielded highly promising 
results with detection accuracy reaching 96.5%, F1 Score 

was 95.2%, AUC-PR attained 97.4%, and sensitivity achieved 
96.5%, which reflects the ability of the model to balance true 
positive rates with minimal false negatives. Additionally, the 
model demonstrated superior scalability at 96.8%, effectively 
handling large volumes of heterogeneous data, and an 
optimized Processing Time of 12 seconds per batch, marking 
a 60 to 70% speed improvement over conventional CNN and 
Faster R-CNN baselines. Comparative analysis confirmed 
substantial enhancements over prior models: CNN, Faster 
R-CNN, and CBAM, across all metrics. The incorporation of 
transfer learning enabled faster convergence and stable 
training, while the attention modules guided the network’s 
focus on critical regions. Furthermore, the fusion of semantic 
and instance segmentation outputs ensured comprehensive 
and context-aware crop health analysis. These innovations 
collectively advance smart agriculture by offering a high-
performance, scalable, and interpretable detection system. 

Despite its efficacy, the model may face limitations under 
extremely noisy or blurred images captured in adverse 
lighting conditions. Future work will involve extending the 
framework to real-time drone feeds and integrating multi-
spectral data for deeper analysis of pest progression and 
plant stress conditions.
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