Efficient I3D-VGG19-based architecture for human activity recognition
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.19Keywords:
Human Activity Recognition (HAR), DenseNet121, VGG19, CNNDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Systems for autonomously identifying and analyzing human activities (HAR) make use of video data captured from various devices area requires ongoing updates due to the developing technology and multidisciplinary nature of HAR. Objective of this research is to classify different activity performed by Human using various pretrained models and latest transfer learning methods. Set the hyperparameters values to get accurate classification based on different performance evaluation matrices. In this study, the VGG19 based optimized I3D architecture is proposed. The experimental findings demonstrate that use of optimized VGG19 based I3D model on the UCF-50 dataset has led to an enhancement in the performance of the Human Activity recognition system with accuracy rate of training is 98.24% and testing is 98.36%, surpassing the performance of alternative I3D model using DenseNet121 in direct comparison. This will facilitate the development of applications like Smart Environments, Elderly Care and Assistive Technologies, Healthcare and Wellness and various other domains.Abstract
How to Cite
Downloads
Similar Articles
- Seema Yadav, Implementation of Human Rights: An Universal Challenge Towards Humanity , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Ramkumar, K. Aanandha Saravanan, Martin Joel Rathnam, M. Revathy, Integration of AI and agent-based modeling for simulating human-ecological systems , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Arun Kumar Sharma, Vinay Sharma, Jyoti Saxena, Bindu Yadav, Afroz Alam, Anand Prakash, Partial purification and characterization of protease enzyme from soil borne bacteria , The Scientific Temper: Vol. 7 No. 1&2 (2016): THE SCIENTIFIC TEMPER
- Seema Bhakuni, Application of artificial intelligence on human resource management in information technolgy industry in India , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sukhada S. Prabhu, Anuprita M. Thakur, Evaluating the Responsiveness of Hindi version of International Physical Activity Questionnaire-Long Form (IPAQ-LF) in healthy adults. , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- SHILPENDRA KOUR, REKHA KHANDAL, RASHMI TRIPATHI, EVALUATION OF LEAF EXTRACTS OF DIFFERENT MEDICINAL PLANTS FOR POTENTIAL ANTIBACTERIAL ACTIVITY AND PRELIMINARY PHYTOCHEMICAL ANALYSIS , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
You may also start an advanced similarity search for this article.